LINEAR PROGRAMMING: MODEL FORMULATION AND GRAPHICAL SOLUTION

Chapter Topics

- Model Formulation
- A Maximization Model Example
- Graphical Solutions of Linear Programming Models
- A Minimization Model Example
- Irregular Types of Linear Programming Models
- Characteristics of Linear Programming Problems

Linear Programming: An Overview

- Objectives of business decisions frequently involve maximizing profit or minimizing costs.
- Linear programming uses linear algebraic relationships to represent a firm's decisions, given a business objective, and resource constraints.
- Steps in application:

1. Identify problem as solvable by linear programming.
2. Formulate a mathematical model of the unstructured problem.
3. Solve the model.
4. Implementation

Model Components

- Decision variables - mathematical symbols representing levels of activity of a firm.
- Objective function - a linear mathematical relationship describing an objective of the firm, in terms of decision variables - this function is to be maximized or minimized.
- Constraints - requirements or restrictions placed on the firm by the operating environment, stated in linear relationships of the decision variables.
- Parameters - numerical coefficients and constants used in the objective function and constraints.

Summary of Model Formulation Steps

Step 1 : Clearly define the decision variables

Step 2 : Construct the objective function
Step 3 : Formulate the constraints

LP Model Formulation A Maximization Example (1 of 4)

\square Product mix problem - Beaver Creek Pottery Company

- How many bowls and mugs should be produced to maximize profits given labor and materials constraints?
\square Product resource reqgeqireqkeqnigyenfo unit profit:

Product	Labor (Hr./Unit)	Clay (Lb./Unit)	Profit (\$/Unit)
Bowl	1	4	40
Mug	2	3	50

LP Model Formulation A Maximization Example (2 of 4)

Figure 7.1

LP Model Formulation A Maximization Example (3 of 4)

Resource 40 hrs of labor per day
Availability: 120 lbs of clay
Decision $\quad x_{1}=$ number of bowls to produce per day
Variables: $\quad x_{2}=$ number of mugs to produce per day
Objective Maximize $Z=\$ 40 x_{1}+\$ 50 x_{2}$
Function: Where $Z=$ profit per day
Resource $1 x_{1}+2 x_{2} \leq 40$ hours of labor
Constraints: $4 x_{1}+3 x_{2} \leq 120$ pounds of clay
Non-Negativity $\quad x_{1} \geq 0 ; x_{2} \geq 0$
Constraints:

LP Model Formulation A Maximization Example (4 of 4)

Complete Linear Programming Model:
Maximize $\quad Z=\$ 40 \mathrm{x}_{1}+\$ 50 \mathrm{x}_{2}$
subject to: $\quad 1 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 40$
$4 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 120$
$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$

Feasible Solutions

A feasible solution does not violate any of the constraints:

Example: $\quad x_{1}=5$ bowls

$$
\begin{aligned}
& x_{2}=10 \text { mugs } \\
& Z=\$ 40 x_{1}+\$ 50 x_{2}=\$ 700
\end{aligned}
$$

Labor constraint check:

$$
\begin{aligned}
& 1(5)+2(10)=25<40 \text { hours } \\
& 4(5)+3(10)=50<120 \text { pounds }
\end{aligned}
$$

Clay constraint check:

Infeasible Solutions

An infeasible solution violates at least one of the constraints:

Example: $x_{1}=10$ bowls

$$
\begin{aligned}
& x_{2}=20 \text { mugs } \\
& Z=\$ 40 x_{1}+\$ 50 x_{2}=\$ 1400
\end{aligned}
$$

Labor constraint check:

$$
1(10)+2(20)=50>40
$$

hours

Graphical Solution of LP Models

\square Graphical solution is limited to linear programming models containing only two decision variables (can be used with three variables but only with great difficulty).
\square Graphical methods provide visualization of how a solution for a linear programming problem is obtained.

Coordinate Axes
 Graphical Solution of Maximization Model (1

 of 12)X_{2} is mugs

Maximize $Z=\$ 40 \mathrm{x}_{1}+\$ 50 \mathrm{x}_{2}$
subject to:

$$
\begin{aligned}
& 1 x_{1}+2 x_{2} \leq 40 \\
& 4 x_{1}+3 x_{2} \leq 120 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Figure 7.2 Coordinates for Graphical Analysis

Labor Constraint Graphical Solution of Maximization Model (2

 of 12)Maximize $Z=\$ 40 x_{1}+\$ 50 x_{2}$ subject to:

$$
\begin{aligned}
& 1 x_{1}+2 x_{2} \leq 40 \\
& 4 x_{1}+3 x_{2} \leq 120 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Figure 7.3 Graph of Labor
Constraint

Labor Constraint Area
 Graphical Solution of Maximization Model (3

 of 12)Maximize $Z=\$ 40 \mathrm{x}_{1}+\$ 50 \mathrm{x}_{2}$ subject to:

$$
\begin{aligned}
& 1 x_{1}+2 x_{2} \leq 40 \\
& 4 x_{1}+3 x_{2} \leq 120 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Figure 7.4 Labor Constraint Area

Clay Constraint Area Graphical Solution of Maximization Model (4

 of 12)Maximize $Z=\$ 40 x_{1}+\$ 50 x_{2}$ subject to:

$$
\begin{aligned}
& 1 x_{1}+2 x_{2} \leq 40 \\
& 4 x_{1}+3 x_{2} \leq 120 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Figure 7.5 Clay Constraint Area

Both Constraints
 Graphical Solution of Maximization Model (5

 of 12)Maximize $Z=\$ 40 \mathrm{x}_{1}+\$ 50 \mathrm{x}_{2}$
subject to:

$$
\begin{aligned}
& 1 x_{1}+2 x_{2} \leq 40 \\
& 4 x_{1}+3 x_{2} \leq 120 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Figure 7.6 Graph of Both Model
Constraints

Feasible Solution Area

Graphical Solution of Maximization Model (6

 of 12)Maximize $Z=\$ 40 x_{1}+\$ 50 x_{2}$ subject to:

$$
\begin{aligned}
& 1 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 40 \\
& 4 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 120 \\
& \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{aligned}
$$

Figure 7.7 Feasible Solution Area

Objective Function Solution = \$800 Graphical Solution of Maximization Model (7

 of 12)Maximize $Z=\$ 40 x_{1}+\$ 50 x_{2}$ subject to: $\quad 1 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 40$
$4 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 120$

Figure 7.8 Objection Function Line for $\mathrm{Z}=$ \$800

Alternative Objective Function Solution Lines Graphical Solution of Maximization Model (8 of 12)

Figure 7.9 Alternative Objective Function Lines

Optimal Solution
 Graphical Solution of Maximization Model (9

of 12)

Maximize $Z=\$ 40 x_{1}+\$ 50 x_{2}$ subject to: $\quad 1 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 40$
$4 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 120$
$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$

Figure 7.10 Identification of Optimal Solution Point

Optimal Solution Coordinates Graphical Solution of Maximization Model (10 of

Figure 7.11 Optimal Solution
Coordinates

Extreme (Corner) Point Solutions Graphical Solution of Maximization Model (11 of

Figure 7.12 Solutions at All Corner Points

Optimal Solution for New Objective Function Graphical Solution of Maximization Model (12 of

12)

Maximize $Z=\$ 70 \mathrm{x}_{1}+\$ 20 \mathrm{x}_{2}$ subject to: $\quad 1 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 40$

$$
4 x_{1}+3 x_{2} \leq 120
$$

$$
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
$$

Figure 7.13 Optimal Solution with $Z=70 x_{1}+$ $20 x_{2}$

Slack Variables

- Standard form requires that all constraints be in the form of equations (equalities).
- A slack variable is added to a sconstraint (weak inequality) to convert it to an equation (=).
- A slack variable typically represents an unused resource.
- A slack variable contributes nothing to the objective function value.

Linear Programming Model: Standard Form

$\operatorname{Max} Z=40 \mathrm{x}_{1}+50 \mathrm{x}_{2}+0 \mathrm{~s}_{1}+0 \mathrm{~s}_{2}$ subject to: $1 \mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{s}_{1}=40$

$$
\begin{gathered}
4 x_{1}+3 x_{2}+s_{2}=120 \\
x_{1}, x_{2}, s_{1}, s_{2} \geq 0
\end{gathered}
$$

Where:
$\mathrm{x}_{1}=$ number of bowls
$\mathrm{x}_{2}=$ number of mugs
$\mathrm{s}_{1}, \mathrm{~s}_{2}$ are slack variables

Figure 7.14 Solution Points A, B, and C with Slack

LP Model Formulation - Minimization (1 of 8)

- Two brands of fertilizer available - Super-gro, Crop-quick.
- Field requires at least 16 pounds of nitrogen and 24 pounds of phosphate.
- Super-gro costs $\$ 6$ per bag, Crop-quick $\$ 3$ per bag.
- Problem: How much of each brand to purchase to minimize total cost of fertilizer given following data ?

Chemical Contribution

Brand	Nitrogen $(\mathrm{lb} / \mathrm{bag})$	Phosphate $(\mathrm{lb} / \mathrm{bag})$
Super-gro	2	4
Crop-quick	4	3

LP Model Formulation - Minimization (2 of 8)

Figure 7.15 Fertilizing farmer's field

LP Model Formulation - Minimization (3 of

 8)Decision Variables:

$$
\begin{aligned}
& x_{1}=\text { bags of Super-gro } \\
& x_{2}=\text { bags of Crop-quick }
\end{aligned}
$$

The Objective Function:
Minimize $Z=\$ 6 x_{1}+3 x_{2}$
Where: $\quad \$ 6 x_{1}=$ cost of bags of Super-Gro $\$ 3 x_{2}=$ cost of bags of Crop-Quick

Model Constraints:
$2 x_{1}+4 x_{2} \geq 16 \mathrm{lb}$ (nitrogen constraint)
$4 x_{1}+3 x_{2} \geq 24 \mathrm{lb}$ (phosphate constraint)
$x_{1}, x_{2} \geq 0$ (non-negativity constraint)

Constraint Graph - Minimization (4 of 8)

Figure 7.16 Graph of Both Model Constraints

Feasible Region- Minimization (5 of 8)

Minimize $Z=\$ 6 x_{1}+\$ 3 \mathrm{x}_{2}$ subject to:

$$
\begin{aligned}
& 2 x_{1}+4 x_{2} \geq 16 \\
& 4 x_{1}+3 x_{2} \geq 24 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Figure 7.17 Feasible Solution Area

Optimal Solution Point - Minimization (6 of 8)

Minimize $Z=\$ 6 x_{1}+\$ 3 x_{2}$ subject to:

$$
\begin{aligned}
& 2 x_{1}+4 x_{2} \geq 16 \\
& 4 x_{1}+3 x_{2} \geq 24 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Figure 7.18 Optimum Solution Point

Surplus Variables - Minimization (7 of 8)

- A surplus variable is subtracted from $\mathbf{a} \geq$ constraint to convert it to an equation (=).
- A surplus variable represents an excess above a constraint requirement level.
- A surplus variable contributes nothing to the calculated value of the objective function.
- Subtracting surplus variables in the farmer problem constraints:

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}-s_{1}=16 \text { (nitrogen) } \\
& 4 x_{1}+3 x_{2}-s_{2}=24 \text { (phosphate) }
\end{aligned}
$$

Graphical Solutions - Minimization (8 of 8)

Minimize $Z=\$ 6 x_{1}+\$ 3 x_{2}+0 s_{1}+0 s_{2}$ subject to:

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}-s_{1}=16 \\
& 4 x_{1}+3 x_{2}-s_{2}=24 \\
& x_{1}, x_{2}, s_{1}, s_{2} \geq 0
\end{aligned}
$$

Figure 7.19 Graph of Fertilizer Example

Irregular Types of Linear Programming Problems

For some linear programming models, the general rules do not apply.
\square Special types of problems include those with:

- Multiple optimal solutions
- Infeasible solutions
- Unbounded solutions

Multiple Optimal Solutions Beaver Creek Pottery

The objective function is parallel to a constraint line.

Maximize $\mathrm{Z}=\$ 40 \mathrm{x}_{1}+30 \mathrm{x}_{2}$ subject to:

$$
\begin{aligned}
& 1 x_{1}+2 x_{2} \leq 40 \\
& 4 x_{1}+3 x_{2} \leq 120 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Where:
$\mathrm{x}_{1}=$ number of bowls
$x_{2}=$ number of mugs

Figure 7.20 Example with Multiple Optimal Solutions

An Infeasible Problem

Every possible solution violates at least one constraint:

Maximize $Z=5 x_{1}+3 x_{2}$ subject to: $\quad 4 x_{1}+2 x_{2} \leq 8$
$x_{1} \geq 4$
$x_{2} \geq 6$
$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$

Figure 7.21 Graph of an Infeasible Problem

An Unbounded Problem

Value of the objective function increases indefinitely:

Maximize $Z=4 x_{1}+2 x_{2}$
subject to: $x_{1} \geq 4$
$x_{2} \leq 2$
$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$

Figure 7.22 Graph of an Unbounded Problem

Characteristics of Linear Programming Problems

\square A decision amongst alternative courses of action is required.
\square The decision is represented in the model by decision variables.
\square The problem encompasses a goal, expressed as an objective function, that the decision maker wants to achieve.
\square Restrictions (represented by constraints) exist that limit the extent of achievement of the objective.
\square The objective and constraints must be definable by linear mathematical functional relationships.

Properties of Linear Programming Models

\square Proportionality - The rate of change (slope) of the objective function and constraint equations is constant.
\square Additivity - Terms in the objective function and constraint equations must be additive.
\square Divisibility -Decision variables can take on any fractional value and are therefore continuous as opposed to integer in nature.
\square Certainty - Values of all the model parameters are assumed to be known with certainty (nonprobabilistic).

Problem Statement Example Problem No. 1 (1 of 3)

- Hot dog mixture in 1000-pound batches.
- Two ingredients, chicken (\$3/lb) and beef (\$5/lb).
- Recipe requirements:

> at least 500 pounds of "chicken" at least 200 pounds of "beef"

- Ratio of chicken to beef must be at least 2 to 1.
- Determine optimal mixture of ingredients that will minimize costs.

Solution

Example Problem No. 1 (2 of 3)

Step 1:

Identify decision variables.

$$
\begin{aligned}
& x_{1}=\mathrm{lb} \text { of chicken in mixture } \\
& x_{2}=\mathrm{lb} \text { of beef in mixture }
\end{aligned}
$$

Step 2:
Formulate the objective function.
Minimize $Z=\$ 3 x_{1}+\$ 5 x_{2}$
where $Z=$ cost per $1,000-\mathrm{lb}$ batch
$\$ 3 \mathrm{x}_{1}=$ cost of chicken
$\$ 5 x_{2}=$ cost of beef

Solution

Example Problem No. 1 (3 of 3)

Step 3:

Establish Model Constraints

$$
\begin{aligned}
& x_{1}+x_{2}=1,000 \mathrm{lb} \\
& x_{1} \geq 500 \mathrm{lb} \text { of chicken } \\
& x_{2} \geq 200 \mathrm{lb} \text { of beef } \\
& x_{1} / x_{2} \geq 2 / 1 \text { or } x_{1}-2 x_{2} \geq 0 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

The Model: Minimize $Z=\$ 3 x_{1}+5 x_{2}$
subject to: $x_{1}+x_{2}=1,000 \mathrm{lb}$
$x_{1} \geq 500$
$x_{2} \geq 200$
$x_{1}-2 x_{2} \geq 0$
$x_{1}, x_{2} \geq 0$

Example Problem No. 2 (1 of 3) readina exercise on page 58

Solve the following model graphically:
Maximize $Z=4 x_{1}+5 x_{2}$
subject to: $\quad x_{1}+2 x_{2} \leq 10$

$$
\begin{aligned}
& 6 x_{1}+6 x_{2} \leq 36 \\
& x_{1} \leq 4 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Step 1:
constraints as equations

Figure 7.23 Constraint Equations

Example Problem No. 2 (2 of 3)

Maximize $Z=4 x_{1}+5 x_{2}$ subject to: $x_{1}+2 x_{2} \leq 10$

$$
6 x_{1}+6 x_{2} \leq 36
$$

$$
x_{1} \leq 4
$$

$$
x_{1}, x_{2} \geq 0
$$

Step 2: Determine the feasible solution space

Figure 7.24 Feasible Solution Space and Extreme Points

Example Problem No. 2 (3 of 3)

Maximize $Z=4 x_{1}+5 x_{2}$ subject to: $x_{1}+2 x_{2} \leq 10$

$$
6 x_{1}+6 x_{2} \leq 36
$$

$$
x_{1} \leq 4
$$

$$
x_{1}, x_{2} \geq 0
$$

Step 3 and 4: Determine the solution points and optimal solution

Figure 7.25 Optimal Solution Point

Assignment

Q. 1 An Aeroplane can carry a maximum of 200 passengers. A profit of Rs. 400 is made on each first class ticket and a profit of Rs. 300 is made on each economy class ticket. The airline reserves at least 20 seats for first class. However, at least 4 times as many passengers prefer to travel by economy class than by the first class. How many tickets of each class must be sold in order to maximize profit for the airline? Formulate the problem as an mode.
Q. 2 Solve the LPP by Graphical method :

Minimize $z=20 x+10 y$
Subject to the constraints

$$
\begin{aligned}
& x+2 y \leq 40, \quad 3 x+y \geq 30, \quad 4 x+3 y \geq 60 \\
& x, y \geq 0
\end{aligned}
$$

Thank You

