Dual Simplex Algorithm

$>$ In "primal" simplex, RHS column in always non-negative, hence basic solution is feasible at every iteration
$>$ What if some elements of the RHS column are negative?
$>$ In such a case, primal is infeasible
$>$ Dual Simplex Algorithm (DSA) : addresses such a scenario
$>$ DSA: particularly useful for re-optimizing a problem after a constraint has been added or some problem parameter has been changed (sensitivity analysis), such that a previously optimal basis is no longer feasible

Dual Simplex Algorithm : Concept

> At each iteration of "primal" simplex:

* always maintain primal feasibility (RHS ≥ 0)
* drive towards primal optimality (in other words dual feasibility), i.e., coefficients of variables in (-z) row ≤ 0
* corresponding dual is always infeasible
> At each iteration of "dual" simplex
*always maintain primal optimality, i.e., coefficients of variables in (-z) row ≤ 0
* In other words, always maintain dual feasibility
* drive towards primal feasibility (RHS ≥ 0)
* terminate when primal feasibility is attained, i.e., all elements in RHS column ≥ 0

Dual Canonical Form

$>$ All decision variables ≥ 0
$>$ All RHS coefficients negative (only difference with "primal" simplex)
> All constraints, except non-negativity stated as equalities
> Isolate one decision variable from each constraint with +1 coefficient, which does not appear in any other constraint and appears with a zero coefficient in the objective function

Procedure of Dual Simplex method

$>$ Convert any functional constraint in \geq form to \leq form by multiplying both sides by -1
> Introduce slack variables as needed
> Identify leaving variable
>variable to leave is the basic variable associated with the constraint with most negative RHS value
> Row corresponding to leaving variable called "pivot row"
*Perform ratio test to identify entering variable

* Pick all negative coefficients in pivot row ($\mathrm{a}_{\mathrm{l} j}$)

Let x_{1} be leaving variable
Compute the ratios ($\mathrm{c}_{\mathrm{j}} / \mathrm{a}_{\mathrm{lj}}$) where all $\mathrm{a}_{\mathrm{lj}}<0$
*Column(variable) that gives smallest ratio enters basis
*Identify pivot element (as in "primal" simplex)

* Divide it by itself to make it 1
*Make other elements in the column of the pivot element
= 0 by performing row operations
© Continue till all elements in RHS column become ≥ 0

Example 1

> Consider the following LP

$$
\begin{gathered}
\operatorname{Max}-3 x_{1}-4 x_{2} \\
\text { s.t. }-2 x_{1}+x_{2} \leq-2 \\
x_{1}+2 x_{2} \geq 4 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

Step 1:Multiply second constraint by -1 to convert to
\leq Form

$$
\begin{gathered}
\operatorname{Max}-3 x_{1}-4 x_{2} \\
\text { s.t. }-2 x_{1}+x_{2} \leq-2 \\
-x_{1}-2 x_{2} \leq-4 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

Example 1-Contd...

Step 2: Add slack variables, convert into dual canonical form

$$
\begin{gathered}
\mathrm{Max}-3 \mathrm{x}_{1}-4 \mathrm{x}_{2} \\
\text { s.t. }-2 \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=-2 \\
-\mathrm{x}_{1}-2 \mathrm{x}_{2}+\mathrm{x}_{4}=-4 \\
\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4} \geq 0
\end{gathered}
$$

Canonical form shown below

$$
\begin{gathered}
-2 x_{1}+x_{2}+x_{3}+0 x_{4}=-2 \\
-x_{1}-2 x_{2}+0 x_{3}+x_{4}=-4 \\
-3 x_{1}-4 x_{2}+0 x_{3}+0 x_{4}=0
\end{gathered}
$$

$1^{\text {st }}$ Tableau

Pivot Row Leaves	Basic Vars	RHS	X_{1}	X_{2}	X_{3}	x_{4}
	X_{3}	-2	-2	1	1	0
	- X_{4}	-4	-1	-2	0	1
	(-z)	0	-3	-4	0	0
	Ratio		-3/-1=3	-4/-2=2		

Pivot Element, make it 1 and other elements in column of x_{2} =0 by row operations

$2^{\text {nd }}$ Tableau

Basic Vars	RHS	x_{1}	x_{2}	x_{3}	x_{4}
x_{3}	-4	$-5 / 2$	0	1	$1 / 2$
x_{2}	2	$1 / 2$	1	0	$-1 / 2$
$(-z)$	8	-1	0	0	-2
Ratio		$-1 /(-5 / 2)=2 / 5$			

x_{3} leaves, x_{1} enters

$3^{\text {rd }}$ Tableau

Basic Vars	RHS	x_{1}	x_{2}	x_{3}	x_{4}
x_{1}	$8 / 5$	1	0	$-2 / 5$	$-1 / 5$
x_{2}	$6 / 5$	0	1	$1 / 5$	$-2 / 5$
$(-z)$	$48 / 5$	0	0	$-2 / 5$	$-11 / 5$
Ratio					

Note:
All RHS elements are now ≥ 0
Hence we are done
Optimal solution: $z=-48 / 5, x_{1}=8 / 5, x_{2}=6 / 5$

Points to Note

> In "primal" simplex, first identify entering variable, then leaving variable
> In "dual" simplex, first identify leaving variable, then entering variable
$>$ At each iteration, all elements of (-z) row ≤ 0
> At each iteration, the dual to the original problem is always feasible
$>$ Verify this by writing the dual to the original problem
$>$ Obtain values form dual multipliers from each tableau * At each iteration, dual multipliers = values of slacks in (z) row, e.g. at $2^{\text {nd }}$ iteration, dual multipliers are 0 and 2

Example 2

$$
\begin{gathered}
\operatorname{Max}-\mathrm{x}_{1}-2 \mathrm{x}_{2} \\
\text { s.t. } \\
-\mathrm{x}_{1}+2 \mathrm{x}_{2}-\mathrm{x}_{3} \leq-2 \\
-2 \mathrm{x}_{1}-\mathrm{x}_{2}+\mathrm{x}_{3} \leq-6 \\
\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0
\end{gathered}
$$

$1^{\text {st }}$ Tableau

Basic Vars	RHS	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
x_{4}	-4	-1	2	-1	1	0
x_{5}	-6	-2	-1	1	0	1
$(-z)$	0	-1	-2	0	0	0
Ratio		$-1 /-$ $2=1 / 2$	$-2 /-1=2$			

x_{5} leaves, x_{1} enters

$2^{\text {nd }}$ Tableau

Basic Vars	RHS	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
x_{4}	-1	0	$5 / 2$	$-3 / 2$	1	$-1 / 2$
x_{1}	3	1	$1 / 2$	$-1 / 2$	0	$-1 / 2$
$(-z)$	3	0	$3 / 2$	$-1 / 2$	0	$-1 / 2$
Ratio				$(-1 / 2)(3 / 2)=1 / 3$		

x_{4} leaves, x_{3} enters

$3^{\text {rd }}$ Tableau

Basic Vars	RHS	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
x_{3}	$2 / 3$	0	$-5 / 3$	1	$-2 / 3$	$1 / 3$
x_{1}	$10 / 3$	1	$-1 / 3$	0	$-1 / 3$	$-1 / 3$
$(-z)$	$10 / 3$	0	$-7 / 3$	0	$-1 / 3$	$-1 / 3$
Ratio						

Optimal solution obtained: $z=-10 / 3, x_{1}=10 / 3, x_{2}=0$

Assignment

- Try yourself
Q. 1 Obtain the Dual of

Maximize $\mathrm{z}=5 \mathrm{x}_{1}+4 \mathrm{x}_{\mathrm{z}}+3 \mathrm{x}_{3}$
Subject to the constraints

$$
\begin{aligned}
& 3 \mathrm{x}_{2}+2 \mathrm{x}_{2}+\mathrm{x}_{2} \leq 10,2 \mathrm{x}_{1}+\mathrm{x}_{2}+2 \mathrm{x}_{3} \leq 12, \mathrm{x}_{1}+\mathrm{x}_{2}+3 \mathrm{x}_{2} \leq 15 \\
& \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{\mathrm{s}} \geq 0
\end{aligned}
$$

Q. 2 Solve the LPP by dual simplex method:

Maximize $\mathrm{z}=-2 \mathrm{x}_{1}-\mathrm{x}_{\mathbf{z}}$
Subject to the constraints:

$$
3 \mathrm{x}_{1}+\mathrm{x}_{2} \geq 3,4 \mathrm{x}_{1}+3 \mathrm{x}_{2} \geq 6, \mathrm{x}_{1}+2 \mathrm{x}_{2} \geq 3 \quad \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
$$

Q. 3 Solve the LPP by dual simplex method:

Minimize $\mathrm{z}=2 \mathrm{x}_{1}+2 \mathrm{x}_{2}+4 \mathrm{x}_{3}$
Subject to the constraints:
$2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+5 \mathrm{x}_{3} \geq 2,3 \mathrm{x}_{1}+\mathrm{x}_{2}+7 \mathrm{x}_{3} \leq 3, \mathrm{x}_{1}+4 \mathrm{x}_{2}+6 \mathrm{x}_{3} \leq 5$
$x_{1}, x_{2}, x_{z} \geq 0$

-Thank you

