unctions of A Complex Variables |

Functions of a complex variable provide us some powerful and
widely useful tools in in theoretical physics.

« Some important physical quantities are complex variables (the
wave-function W) E, — E°+il

* Evaluating definite integrals.

» Obtaining asymptotic solutions of differentials
equations.

* Integral transforms

* Many Physical quantities that were originally real become complex
as simple theory is made more general. The energy
( 1T = the finite life time).



gebra

We here go through the complex algebra briefly.
A complex number z = (x,y) = x + iy, Where. | = \/__1
We will see that the ordering of two real numbers (x,y) is significant,
i.e. in general x + iy #y + ix

X: the real part, labeled by Re(z); y: the imaginary part, labeled by Im(z)

Three frequently used representations:
(1) Cartesian representation: x+iy ¥
(2) polar representation, we may write g =

z=r(cos 0 + 1 sin0) or 7—r.p

r - the modulus or magnitude of z
0 - the argument or phase of z

——— . S e — — . e —
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ulus or magnitude of z
0 - the argument or phase of z

s 7 (x2+ y2)1/2
6 = tan " (y/x)

The relation between Cartesian
and polar representation:

The choice of polar representation or Cartesian representation is a
matter of convenience. Addition and subtraction of complex variables
are easier in the Cartesian representation. Multiplication, division,
powers, roots are easier to handle in polar form,

222, =t X%)+iI(y Y,)
2,2, = (XX, = Y1Y,) H1(X Y, + X5 5)

> g il )

L =(r1/r2)ei(91_92) ;N _ ¢ Nea in 6



2125 = |z4]]z2]

arg(z,z,) = arg(z,) +arg(z,)

From z, complex functions f(z) may be constructed.
They can be written

f(z) = u(x,y) + iv(x,y)
in which v and u are real functions.
For example if f(z)=22 , we have

f(z):(x2 —y2)+i2xy

The relationship between z and f(z) is best pictured as a
mapping operation, we address it in detail later.
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The function w(x,y)=u(X,y)+iv(x,y) maps points in the xy plane into points
In the uv plane.

Since - S
e' =cos@+isind

e’ = (cos@+isin )"

We get a not so obvious formula

cosn@+isinnd = (cos@+isin )"



ex Conjugation: replacing i by -1, which is denote

*

Z =X-—1y
We then have
77 =x% +y?=r?
Hence
EE e -
7| = \zz Special features: single-valued function of a
Note: real variable ---- multi-valued function
s—rel? peild+2nz)
Inz=Inr+i6 Inz =Inr+i(6+2n7)

In z is a multi-valued function. To avoid ambiguity, we usually set n=0
and limit the phase to an interval of length of 2rt. The value of Inz with
n=o is called the principal value of Inz.



r possibility
|sin x|,| cos x |[<1for a real x;
however, possibly |sinz|,|cosz|>1and even — o

Question:
Using the identities :

e|z_|_e—|z eiz
COSZ = > : SInz =

21
toshow (a) sin(x+1y) =sinxcosh y+icosxsinhy
cos(X+1y) =cos xcosh y —isin xsinh y
(b) |sinz [’=sin® x+sinh® y
|cosz |*=cos’ x+sinh? y



chy — Riemann conditions

Having established complex functions, we now proceed to
differentiate them. The derivative of f(z), like that of a real function, is

defined by

- flzta) fz) - glz) df £(2)
52—0 oL a0 o  dz

provided that the limit is independent of the particular approach to the
point z. For real variable, we require that  lim_f'(x)= lim f'(x)= f'(x,)

A 7 A X—=>Xo 3 X—=>Xo
Now, with z (or zo) some point in a plane, our requirement that the

limit be independent of the direction of approach is very restrictive.

Consider
OL = OX + 10y
of = ou +16v
of  ou +1iov

o OX + 10y



Stake limit by the two different approac es as in the figure. First,
with 8y = o, we let 6x—>o0, . -

_‘M.
jim < = lim (5“ +i5"j B B L

2—>0 0L &0 X X Sx=0
dy -0
au av B
8x 8x x
Assuming the partial derivatives exist. For a second approach, we set
ox = o and then let dy=> o. This leads to ' Of ou oV
im —=—-i—+—



Riemann conditions are necessary for the existence of a derivative, that
is, if f’(x) exists, the C-R conditions must hold.

Conversely, if the C-R conditions are satisfied and the partial
derivatives of u(x,y) and v(x,y) are continuous, f(z) exists. (see the proof
in the text book).

10



If f(z) is differentiable at z =2z, and in some small region around z
we say that f(z) is analytic at z =z,

0 ]

Differentiable: Cauthy-Riemann conditions are satisfied
the partial derivatives of u and v are continuous

Analytic function:

Property 1: Vzu = VZV 0

Property 2. established a relation between u and v

Example:
Find the analytic functions w(z) = u(Xx, y) +iv(X, y)

if (a) u(x,y)=x>-3xy°
(b) v(x,y)=e"?sinx

11
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wiith az)|=|z, -2, | >0 forj. Then
n Zo'
im D" f(¢; ;= [ F(z)e
_)OOJ= 25

provided that the limit exists and is
Independent of the details of

choosing the points z; and ¢,

where £; Is a point on the curve bewteen

z;and z;_,.

We now turn to integration.
in close analogy to the integral of a real function
The contourz — 7, is divided into n intervals .Let—s «

- T

The right-hand side of the above equation is called the contour (path)

integral of f(z)

12



n.alter ative, the contour ma

%) Wi
j f(z)dz= j[u(x,y)+iv(x,y)][dx + idy ]
clidy c X1Y1
X2Y2 X2Y2
= j ludx — vdy] +i j[vdx+udy]
c a1 c Xh

with the path C specified. This reduces the complex integral to the
complex sum of real integrals. It's somewhat analogous to the case of
the vector integral.

An important example j 7"dz

C
where C is a circle of radius r>0 around the origin z=0 in
the direction of counterclockwise.

13



=4z = ire Yd6, and e

1 r.n-l-l 27
— 2y — jexp[i(n +1)9]d6
i J )
_{O for n # -1
i forn=-1

which is independent of r.
Cauchy’s integral theorem

e Ifa function f(z) is analytical (therefore single-valued) [and its partial
derivatives are continuous| through some simply connected region R,
for every closed path C in R,

14



eorem proof

Proof: (under relatively restrictive condition: the partial derivative of u, v
are continuous, which are actually not required but usually
satisfied in physical problems)

§ f(z)dz = &(udx—vdy)+ i§(vdx+ udy)

C C C
These two line integrals can be converted to surface integrals by

Stokes’s theorem

pA-dl=[VxA-ds
C S

Using A= AX+Ajyand  ds = dxdy Z
We have

§(A(dx+Aydy):§Ad[:ijA-d§

C
oA
= f y & dxdy
ox oy

15



: - oV ou
=0 [since C-R conditions = 5]
For the imaginary part, setting u = Ay and v = Ax, we have

§ (vx-+udy) = j @ —g}ixdy: 0

§f(z)dz =0

As for a proof without using the continuity condition, see the text book.
The consequence of the theorem is that for analytic functions the line

integral is a function only of its end points, independent of the path of
integration, g,

j f(z)dz=F(zz)—F(zl)=—]l f(2)dz

16



€ original statement of our theorem demanded a simply connected
region. This restriction may easily be relaxed by the creation of a
barrier, a contour line. Consider the multiply connected region of
Fig.1.6 In which f(z) is not defined for the interior R’

‘ »
c . S
Cauchy’s in R ““——=x he contour C, but we can
construct a © 1ur winct uie wievrein noius. If line segments DE and

GA arbitrarily close together, then

A

J- f(z )z = —J‘ f (z )dz

G

157



j+j+j+j}®m

C’ |:ABD DE GA EFG

§ f(z)dz =

(ABDEFGA)

AAAAAA

ABD €. EFG >.-C

)

%fliln:::fl// A N



chy’s Integral Formula
Cauchy’s integral formula: If f(z) is analytic on and within a closed

contour C then
ﬁﬂ = 27if (2, )

L — 17
C 0

in which z. is some point in the interior region bounded by C. Note that
here z-zo #0 and the integral is well defined.

Although f(z) is assumed analytic, the integrand (f(z)/z-zo) is not

analytic at z=zo unless f(zo)=o0. If the contour is deformed as in Fig.1.8
Cauchy’s integral theorem applies. ¥ | |
So we have i

19



)’/ [ 1173 viH-even{udlly be'mac

approach zero

i‘) flzkz g, _ § f(ZO Jrigrem)rie“gdg
re

Here is a remarkable result. The value of an analytic function is given at
an interior point at z=zo, once the values on the boundary C are

specified.

What happens if zo is exterior to C?
In this case the entire integral is analytic on and within C, so the

integral vanishes.

20
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f(z)dz _ {f(zo),

27z|C Z- 7y 0,

Zo exterior

Derivatives
Cauchy’s integral formula may be used to obtain an expression for
the derivation of f(z)

[ dOzlo uzi I fz(f)z(:Z]

- ii f(2)dz djo [z _120 j - thi ig(szzz):;

Moreover, for the n-th order of derivative

£ () (z,)= 2':; i;(zf(Z)dz

. )n+1

21
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e now-see that, the requirement that f(z)-be-analyticne “only guarantees
a first derivative but derivatives of all orders as well! The derivatives of
f(z) are automatically analytic. Here, it is worth to indicate that the
converse of Cauchy’s integral theorem holds as well

Morera’s theorem:

If a function f(z) Is continuous in a simply connected region R
and §C f (z)dz =0 for every closed C within R, then f(z) is

analytic throught R (see the text book).

22



1.If f(z)=) a,z"isanalyticon and within
n>0

a circle about the origin, find a,,.

£ )(z)= jlaj + Zan{ 12"

n—j>1

tU)(0)=jta;

tie) 1 SE f (z)dz

n! 2 77l 7 N+1

23



)‘ et & S Cl -rl'["-l!['._—a- (

then |a,|r" <M (Cauchy’s inequality)
Proof:

where M (r )= Max - (r)

3. Liouville’s theorem: If f(z) is analytic and bounded in the complex
plane, it is a constant.

Proof: For any zo, construct a circle of radius R around z,
/ 1 f (z )dz

)l 27ri§3 -~ 2
R (Z — Zp )

M

R

M 2xzR
27 R ?

24



f'(z)=0,ie,f(z) = const .

Conversely, the slightest deviation of an analytic function from a
constant value implies that there must be at least one singularity
somewhere in the infinite complex plane. Apart from the trivial constant
functions, then, singularities are a fact of life, and we must learn to live

with them, and to use them further.

25



{} f(z')dz’

dn 27” (Z - Z0)n+1

Here C may be any contour with the annular region r <
|z-z| < R encircling z. once in a counterclockwise
sense.

Laurent Series need not to come from evaluation of
contour integrals. Other techniques such as ordinary
series expansion may provide the coefficients.

Numerous examples of Laurent series appear in the next
chapter.

26



Assignment 1
* Try yourself

Q.1: Find real & Imaginary parts of (i) e (ii) e
Q.2 : If a and B are the imaginary cube roots of unity, prove that ae“* +

Bef* = —ez (cos—x+ v’qsfn—t)
Q.3 : Show that li;]ngfﬁ3 ;‘ 2i(nm - tan™ 1)

Q.4: Show that log(6+8i)= log 10 +i 1 tan *

PR S

Q.5 :Prove that Vit = &-h- {fﬂ.& -I- [ sin —)

27



Assignment 2

if u=logtan( +§} , then prove that

° TryyourselfQ =

(i) tanh ;—‘ = tang

(i) cosh 1 — sec &

Q.2: Prove that (i) sénz=sinz (ii) tanz = tanz
(1i1) CONZ = CO8Z

Q3:Iftan{® + L) = tame + L seca show

e*? = F cot and 2@ = (ﬂ‘- - é) T

Q.4: find the value of (1) so that the function

£ -
f(z)= E_E"' ty mot continuous abt z = £
GG FE oy — % LZ2 =0 & F(O) = 0 ,prove that
w — 0 as z— 0 along any radius vector but not as z
— ()

In any manner. 28



Assignment

1:Determine the Analytic function whose real part is

° TI’Y yourself (i) e*[(x% — y%?)cosy — Zxy siny|
(i) logv (xZ - ¥2)

Q.2:Determine the Regular function whose imaginary part is
() e ™ (xcosy + ysiny)
(ii) cos y sinh x
Q.3: if f(2) = 1t -I- f12 is an analytic function ,find f(z) if
W —1 = ¢ (cayy — yiny)
Q.4: Show that the function #(x, ¥) = In(x® + ¥*) +x — 2y

Is harmonic . find its conjugate harmonic function u(x,y)
and the corresponding analytic function f(z)

Q.5 If f(2) is an analytic function of z , prove that
: a2 a2 g : ST
() (g2 *a IR F(DN* = 2Z|F ()]

mﬂh=§§W@ﬁ—4H@H 29



Assignment 4

* Try yourself
Q.1Evaluate (™ (x* —iy)dz along the paths y=x

Q.2 Show that Evaluate the integral § ‘<=m=-s2r=léz

(g=21(z=1)"

|z] = 3 by Cauchy’s integral formula.

Q.3 Evaluate the integral § F"“i:"ii,_ c: |zl == by Cauchy ‘s
¢ ziz-20z-1) .
integral formula.
Zdz : o1 P
Q4 9 - C: |z-2] =3 by Cauchy’s integral

formula.

30



*Thank you



