Fourier Transform and Applications

Fourier

Overview

- Transforms
- Mathematical Introduction
- Fourier Transform
- Time-Space Domain and Frequency Domain
- Discret Fourier Transform
- Fast Fourier Transform
- Applications
- Summary
- References

Transforms

- Transform:
- In mathematics, a function that results when a given function is multiplied by a so-called kernel function, and the product is integrated between suitable limits. (Britannica)
- Can be thought of as a substitution

$$
F(s)=\{\mathcal{L} f\}(s)=\int_{0^{-}}^{\infty} e^{-s t} f(t) d t
$$

Transforms

- Example of a substitution:
- Original equation: $x_{4}+4 x^{2}-8=0$
- Familiar form: $a x^{2}+b x+c=0$
- Let: $\mathrm{y}=\mathrm{x}^{2}$
- Solve for y
- $x= \pm \sqrt{ } y$

Transforms

- Transforms are used in mathematics to solve differential equations:
- Original equation
- Apply Laplace Transform
- Take inverse Transform: y $=\mathrm{L}^{-1}(\mathrm{y})$

Fourier Transform

- Property of transforms:
- They convert a function from one domain to another with no loss of information
, Fourier Transform:

$$
F(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t
$$

converts a function from the time (or spatial) domain to the frequency domain

Linearity of the Fourier Transform

If

$$
\begin{array}{lc}
\text { If } & \quad x(t) \stackrel{F}{\leftrightarrow} X(j \omega) \\
& \\
\text { and } & y(t) \stackrel{F}{\leftrightarrow} Y(j \omega)
\end{array}
$$

Then

$$
a x(t)+b y(t) \leftrightarrow a X(j \omega)+b Y(j \omega)
$$

This follows directly from the definition of the Fourier transform (as the integral operator is linear). It is easily extended to a linear combination of an arbitrary number of signals

Time Shifting

- If $x(t) \stackrel{F}{\leftrightarrow} X(j \omega)$
- Then

$$
\begin{array}{rl}
x\left(t-t_{0}\right) \stackrel{F}{\leftrightarrow} e^{-j \omega t_{0}} & X(j \omega) \\
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega
\end{array}
$$

- Now replacing t by $t-t_{0}$

$$
x\left(t-t_{0}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega\left(t-t_{0}\right)} d \omega
$$

- Recognising this as

$$
=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(e^{-j \omega \omega_{0}} X(j \omega)\right) e^{j \omega t} d \omega
$$

$$
F\left\{x\left(t-t_{0}\right)\right\}=e^{-j \omega t_{0}} X(j \omega)
$$

- A signal which is shifted in time does not have its Fourier transform magnitude altered, only a shift in phase.

Example: Linearity \& Time Shift

- Consider the signal (linear sum of two time shifted steps)

$$
x(t)=0.5 x_{1}(t-2.5)+x_{2}(t-2.5)
$$

where $x_{1}(t)$ is of width $1, x_{2}(t)$ is of width 3 , centred on zero.
Using the rectangular pulse example

$$
\begin{aligned}
& X_{1}(j \omega)=2 \sin (\omega / 2) / \omega \\
& X_{2}(j \omega)=2 \sin (3 \omega / 2) / \omega
\end{aligned}
$$

Then using the linearity and time shift Fourier transform properties

$$
X(j \omega)=e^{-j 5 \omega / 2}((\sin (\omega / 2)+2 \sin (3 \omega / 2)) / \omega)
$$

Differentiation \& Integration

By differentiating both sides of the Fourier transform synthesis equation:
Therefore: $\quad \frac{d x(t)}{d t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} j \omega X(j \omega) e^{j \omega t} d \omega$
This is important, because it replaces differentiation in the time domain with multiplication in the frequency domain.
Integration is similar:

$$
\frac{d x(t)}{d t} \stackrel{F}{\leftrightarrow} j \omega X(j \omega)
$$

The impulse term represents the dc or average value that can result from integration

$$
\int_{-\infty}^{t} x(\tau) d \tau=\frac{1}{j \omega} X(j \omega)+\pi X(0) \delta(\omega)
$$

Time Domain and Frequency Domain

- Time Domain:
- Tells us how properties (air pressure in a sound function, for example) change over time:
- Ampl

- Frequency = number of cycles in one second $=200 \mathrm{~Hz}$

Time Domain and Frequency Domain

- Frequency domain:
- Tells us how properties (amplitudes) change over frequencies:

Time Domain and Frequency Domain

- Example:
- Human ears do not hear wave-like oscilations, but constant torn

 domain

Time Domain and Frequency Domain

- In 1807, Jean Baptiste Joseph Fourier showed that any periodic signal could be represented by a series of sinusoidal functions

In picturencomposition of the first two functions gives the bottom one

Time Domain and Frequency Domain

Time Domain Waveform

Frequency Domain

Fourier Transform

- Because of the property:

$$
\begin{aligned}
& \text { EULER's FORMULA } \\
& e^{i \theta}=\cos \theta+i \sin \theta \\
& e^{i \cos }=\cos \cos +i \sin \omega t
\end{aligned}
$$

$$
\text { where } i-\sqrt{-1}
$$

- Fourier Transform takes us to the frequency domain:

the Fourier transfiorm; strength of frequency ar contained inf(t)
scale factor for the Fourier Transform $F\left(\boldsymbol{m}^{3}\right)$; the original signal in the time domain; the "inverge Fourier transform².

Discrete Fourier Transform

- In practice, we often deal with discrete functions (digital signals, for example)
- Discrete version of the Fourier Transform is much more useful in computer science:

$$
f_{j}=\sum_{\substack{k=0 \\ \\ U(\mathrm{n}<) \\ \text { time compiexity }}}^{n-1} x_{k} e^{-\frac{2 \pi i}{n} j k} \quad j=0, \ldots, n-1
$$

Fast Fourier Transform

- Many techniques introduced that reduce computing time to O(n log n)
- Most popular one: radix-2 decimation-in-time (DIT) FFT Cooley-Tukey algorithm:

$$
\begin{aligned}
f_{j} & =\sum_{k=0}^{\frac{n}{2}-1} x_{2 k} e^{-\frac{2 \pi i}{n} j(2 k)}+\sum_{k=0}^{\frac{n i}{2}-1} x_{2 k+1} e^{-\frac{2 \pi i}{n 2} j(2 k+1)} \\
& =\sum_{k=0}^{n^{\prime}-1} x_{k}^{\prime} e^{-\frac{2 \pi i}{n^{\prime}} j k}+e^{-\frac{2 \pi i}{n} j} \sum_{k=0}^{n^{\prime}-1} x_{k}^{\prime \prime} e^{-\frac{2 \pi i}{n^{\prime}} j k} \\
& =\left\{\begin{array}{cc}
f_{j}^{\prime}+e^{-\frac{2 \pi i}{n} j} f_{j}^{\prime \prime} & \text { if } j<n^{\prime} \\
f_{j-n^{\prime}}^{\prime}-e^{-\frac{2 \pi i}{n}\left(j-n^{\prime}\right)} f_{j-n^{\prime}}^{\prime \prime} & \text { if } j \geq n^{\prime}
\end{array}\right.
\end{aligned}
$$

(Divide and conquer)

Applications

- In image processing:
- Instead of time domain: spatial domain (normal image space)
- frequency domain: space in which each image value at image position F represents the amount that the intensity values in image I vary over a specific distance related to F

Example 1: Solving a First Order ODE

Calculate the response of a CT LTI system with impulse response:

$$
h(t)=e^{-b t} u(t) \quad b>0
$$

to the input signal:

$$
x(t)=e^{-a t} u(t) \quad a>0
$$

Taking Fourier transforms of both signals:

$$
H(j \omega)=\frac{1}{b+j \omega}, \quad X(j \omega)=\frac{1}{a+j \omega}
$$

gives the overall frequency response:

$$
Y(j \omega)=\frac{1}{(b+j \omega)(a+j \omega)}
$$

to convert this to the time domain, express as partial fractions:

$$
Y(j \omega)=\frac{1}{b-a}\left(\frac{1}{(a+j \omega)}-\frac{1}{(b+j \omega)}\right) \quad \begin{aligned}
& \text { assume } \\
& b \neq a
\end{aligned}
$$

Therefore, the CT system response is:

$$
y(t)=\frac{1}{b-a}\left(e^{-a t} u(t)-e^{-b t} u(t)\right)
$$

Example 2: Design a Low Pass Filter

Consider an ideal low pass filter in frequency domain:

$$
\begin{aligned}
& H(j \omega)= \begin{cases}1 & |\omega|<\omega_{c} \\
0 & |\omega|>\omega_{c}\end{cases} \\
& Y(j \omega)=\left\{\begin{array}{cl}
X(j \omega) & |\omega|<\omega_{c} \\
0 & |\omega|>\omega_{c}
\end{array}\right.
\end{aligned}
$$

The filter's impulse response is the inverse Fourier transform

$$
h(t)=\frac{1}{2 \pi} \int_{-\omega_{c}}^{\omega_{c}} e^{j \omega t} d \omega=\frac{\sin \left(\omega_{c} t\right)}{\pi t}
$$

which is an ideal low pass CT filter. However it is non-causal, so this cannot be manufactured exactly \& the time-domain oscillations may be undesirable
We need to approximate this filter with a causal system such as $1^{\text {st }}$ order LTI system impulse response $\{h(t), H(j \omega)\}$:

$$
a^{-1} \frac{\partial y(t)}{\partial t}+y(t)=x(t), \quad e^{-a t} u(t) \stackrel{F}{\leftrightarrow} \frac{1}{a+j \omega}
$$

Applications: Frequency Domain In Images

- If there is value 20 at the point that represents the frequency 0.1 (or 1 period every 10 pixels). This means that in the corresponding spatial domain image I the intensity values vary from dark to light and back to dark over a distance of 10 pixels, and that the contrast between the lightest and
 darkest is 40 gray levels

Applications: Frequency Domain In Images

- Spatial frequency of an image refers to the rate at which the pixel intensities change
- In picture on right:
- High frequences:
- Near center
- Low frequences:
- Corners

Applications: Image Filtering

Specimen Image

Free Hand Filter
Power Spectrum
Reconstructed Image

Figure 1

Other Applications of the DFT

- Signal analysis
- Sound filtering
- Data compression
- Partial differential equations
- Multiplication of large integers

Summary

- Transforms:
- Useful in mathematics (solving DE)
- Fourier Transform:
- Lets us easily switch between time-space domain and frequency domain so applicable in many other areas
- Easy to pick out frequencies
- Many applications

Assignment-1

- Try yourself

Q1. Find the Fourier sine transform of $\frac{e^{-a x}}{x}$

Q2. Find the Fourier sine transform of $e^{-a x}$. Hence evaluate $\int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} d x$

Q3. Find the Fourier sine transform of $\frac{1}{X}$

Q4. Find the Fourier cosine transform of $e^{x^{2}}$
Q5. Find the Fourier cosine transform of $f(x)= \begin{cases}\cos x & , 0<x<a \\ 0 & , x>a\end{cases}$

Assignment-2

- Try yourself

Q1. Using Parseval's $\int_{0}^{\infty} \frac{t^{2}}{\left(4+t^{2}\right)\left(9+t^{2}\right)} d t=\frac{\pi}{10}$
Q2. Find the Fourier cosine transform of $f(x)= \begin{cases}1-|x| & ,|x|<1 \\ 0 & ,|x|>1\end{cases}$

Q3. Solve the equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad x>0, \quad t>0
$$

subject to the condition
(i). $u=0$, when $x=0, \quad t>0$
(ii). $u=\left\{\begin{array}{ll}1, & 0<x<1 \\ 0, & x \geq 1\end{array} \quad\right.$ when $t=0$
and
(iii). $u(x, t)$ is bounded.

Assignment-3

- Try yourself

Q1. Use finite Fourier transform, solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$
subject to the condition
(i). $u_{x}(0, t)=u_{x}(6, t)=0$,
$0<x<6, \quad t>0$
(ii). $u(x, 0)=x(6-x)=0$,
$0<x<6$

Q2. Verify convolution theorem for $F(x)=G(x)=e^{-x^{2}}$
„Thank you

