The Fourier Series

Plan of talk

- Evolution of Fourier Series
- Introduction
- Periodic function
- Fourier series for period T
- Even and Odd functions
- Fourier series for even and odd function
- Conclusion

Evolution of Fourier Series

- When the French mathematician J oseph Fourier (1768-1830) was trying to solve a problem in heat conduction, he needed to express a function as an infinite series of sine and cosine functions:

$$
\begin{aligned}
f(t)= & \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega t+b_{n} \sin n \omega t\right) \\
= & \frac{a_{0}}{2}+a_{1} \cos \omega t+a_{2} \cos 2 \omega t+\ldots \ldots \ldots \\
& +b_{1} \sin \omega t+b_{2} \sin 2 \omega t+\ldots \ldots \ldots
\end{aligned}
$$

The above series is a trigonometric series, later called as Fourier series.

- Interest in studying Fourier Series in the field of Science and Engineering is increased because this provides an important tool in solving problems that involve ordinary and partial differential equations.
- The theory of Fourier series is rather complicated, but the application of these series is simple.

Introduction

A Fourier series is an expansion of a periodic function $f(t)$ in terms of an infinite sum of cosine and sine series

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega t+b_{n} \sin n \omega t\right)
$$

In other words, any periodic function can be resolved as a summation of constant value, cosine and sine functions as

$$
\begin{aligned}
f(t)=\frac{a_{0}}{2} & +\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega t+b_{n} \sin n \omega t\right) \\
=\frac{a_{0}}{2} & +\left(a_{1} \cos \omega t+b_{1} \sin \omega t\right) \\
& +\left(a_{2} \cos 2 \omega t+b_{2} \sin 2 \omega t\right) \\
& +\left(a_{3} \cos 3 \omega t+b_{3} \sin 3 \omega t\right)+\ldots
\end{aligned}
$$

Periodic function

- If at equal intervals of abscissa t, the value of each ordinate $f(t)$ repeat itself, then $y=f(t)$ is said to be a periodic function having period T , i.e.,

$$
\mathbf{f}(\mathbf{t})=\mathbf{f}(\mathbf{t}+\mathbf{T}) \quad \text { for all } \mathrm{t} .
$$

Examples: $\operatorname{Sin} t, \cos t$ are periodic functions of period 2π.

Fourier series for period T

$$
\begin{equation*}
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega t+b_{n} \sin n \omega t\right) \tag{1}
\end{equation*}
$$

where $\omega=\frac{2 \pi}{T}=$ Fundamental frequency

$$
a_{0}=\frac{2}{T} \int_{0}^{T} f(t) d t
$$

$$
a_{n}=\frac{2}{T} \int_{0}^{T} f(t) \cos n \omega t d t
$$

$$
b_{n}=\frac{2}{T} \int_{0}^{T} f(t) \sin n \omega t d t
$$

*we can also use the integrals limit $\int_{-T / 2}^{T / 2}$.

Determination of Fourier Coefficients

To find the value of a_{0} we have to integrate both sides of Eqn. (1) from 0 to T, then

$$
\begin{aligned}
\int_{0}^{T} f(t) d t & =\frac{a_{0}}{2} \int_{0}^{T} d t+\int_{0}^{T}\left(\sum_{n=1}^{\infty} a_{n} \cos n \omega t\right) d t+\int_{0}^{T}\left(\sum_{n=1}^{\infty} b_{n} \sin n \omega t\right) d t \\
& =\frac{a_{0} T}{2}+0+0=\frac{a_{0} T}{2}
\end{aligned}
$$

$\Rightarrow a_{0}=\frac{2}{T} \quad \int_{0}^{T} f(t) d t \quad f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega t+b_{n} \sin n \omega t\right)$
To find the value of a_{n} and b_{n} we have to multipfy both side of Eqn. (1) by $\cos n \omega t$ and $\sin n \omega t$ respectively and then integrate from 0 to T

$$
a_{n}=\frac{2}{T} \int_{0}^{T} f(t) \cos n \omega t d t \quad b_{n}=\frac{2}{T} \int_{0}^{T} f(t) \sin n \omega t d t
$$

Solution

First, determine the period \& describe the one period of the function:

$$
f(t)=\left\{\begin{array}{ll}
1, & 0<t<1 \\
0, & 1<t<2
\end{array} \quad f(t+2)=f(t)\right.
$$

Then, obtain the coefficients a_{0}, a_{n} and b_{n} :
$a_{0}=\frac{2}{T} \int_{0}^{T} f(t) d t=\frac{2}{2} \int_{0}^{2} f(t) d t=\int_{0}^{1} 1 d t+\int_{1}^{2} 0 d t=1-0=1$
Or, since $\int_{a}^{b} f(t) d t$ is the total area below graph $y=f(t)$ over the interval $[a, b]$, hence
$a_{0}=\frac{2}{T} \int_{0}^{T} f(t) d t=\frac{2}{T} \times\binom{$ Area below graph }{ over $[0, T]}=\frac{2}{2} \times(1 \times 1)=1$

$$
\begin{aligned}
a_{n} & =\frac{2}{T} \int_{0}^{2} f(t) \cos n \omega t d t \\
& =\int_{0}^{1} 1 \cos n \pi t d t+\int_{1}^{2} 0 d t=\left[\frac{\sin n \pi t}{n \pi}\right]_{0}^{1}=\frac{\sin n \pi}{n \pi}
\end{aligned}
$$

Notice that n is integer which leads $\sin n \pi=0$, since $\sin \pi=\sin 2 \pi=\sin 3 \pi=\ldots=0$

Therefore, $a_{n}=0$.
$b_{n}=\frac{2}{T} \int_{0}^{2} f(t) \sin n \omega t d t$
$=\int_{0}^{1} 1 \sin n \pi t d t+\int_{1}^{2} 0 d t=\left[-\frac{\cos n \pi t}{n \pi}\right]_{0}^{1}=\frac{1-\cos n \pi}{n \pi}$
Notice that $\cos \pi=\cos 3 \pi=\cos 5 \pi=\ldots=-1$ $\cos 2 \pi=\cos 4 \pi=\cos 6 \pi=\ldots=1$
or $\cos n \pi=(-1)^{n}$
Therefore, $b_{n}=\frac{1-(-1)^{n}}{n \pi}=\left\{\begin{array}{cc}2 / n \pi & , \quad n \text { odd } \\ 0, & n \text { even }\end{array}\right.$

Finally,

$$
\begin{aligned}
f(t) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega t+b_{n} \sin n \omega t\right) \\
& =\frac{1}{2}+\sum_{n=1}^{\infty}\left[\frac{1-(-1)^{n}}{n \pi}\right] \sin n \pi t \\
& =\frac{1}{2}+\frac{2}{\pi} \sin \pi t+\frac{2}{3 \pi} \sin 3 \pi t+\frac{2}{5 \pi} \sin 5 \pi t+\ldots
\end{aligned}
$$

[Supplementary]

- The sum of the Fourier series terms can evolve (progress) into the original waveform

From Example 1, we obtain

$$
f(t)=\frac{1}{2}+\frac{2}{\pi} \sin \pi t+\frac{2}{3 \pi} \sin 3 \pi t+\frac{2}{5 \pi} \sin 5 \pi t+\ldots
$$

It can be demonstrated that the sum will lead to the square wave:

Some helpful identities

$$
\sin (-x)=-\sin x \quad \cos (-x)=\cos x
$$

For n integers,

$$
\begin{array}{ccc}
& \sin n \pi=0 & \cos n \pi=(-1)^{n} \\
\sin 2 n \pi=0 & \cos 2 n \pi=1 \\
\sin \frac{n \pi}{2}=0 \quad \text { (if n is even) } & \cos \frac{n \pi}{2}=0 \quad \text { (if nis odd) } \\
= \pm 1 \quad \text { (if nis odd) } & & = \pm 1 \quad \text { (if n is even) }
\end{array}
$$

Even and Odd Functions

- Symmetry functions:
(i) even symmetry
(ii) odd symmetry

Even symmetry

- Any function $f(t)$ is even if its plot is symmetrical about the vertical axis, i.e.

$$
f(-t)=f(t)
$$

Odd symmetry

- Any function $f(t)$ is odd if its plot is antisymmetrical about the vertical axis, i.e.

$$
f(-t)=-f(t)
$$

Even and odd functions

The product properties of even and odd functions are:

- $($ even $) \times($ even $)=($ even $)$
- $($ odd $) \times($ odd $)=($ even $)$
- (even) $\times($ odd $)=($ odd $)$
- $($ odd $) \times($ even $)=($ odd $)$

Fourier series for even and odd functions in the interval (-T/2 to T/2)

Case I: when $f(t)$ is an even function

$$
\begin{aligned}
& a_{0}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) d t=\frac{4}{T} \int_{0}^{T / 2} f(t) d t \\
& a_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) \cos n \omega t d t=\frac{4}{T} \int_{0}^{T / 2} f(t) \cos n \omega t d t \\
& b_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) \sin n \omega t d t=0
\end{aligned}
$$

The Fourier series for the even function is

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n \omega t
$$

Fourier series for even and odd functions in the interval (-T/2 to T/2)

Case II: when $f(t)$ is an Odd function

$$
\begin{aligned}
& a_{0}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) d t=0 \\
& a_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) \cos n \omega t d t=0 \\
& b_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) \sin n \omega t d t=\frac{4}{T} \int_{0}^{T / 2} f(t) \sin n \omega t d t
\end{aligned}
$$

The Fourier series for the even function is

$$
f(t)=\sum_{n=1}^{\infty} b_{n} \sin n \omega t
$$

Conclusion

- Fourier series only support periodic functions
- In real application, many functions are non-periodic
- The non-periodic functions are often can be defined over finite intervals, e.g.

Therefore, any non-periodic function must be extended to a periodic function first, before computing its Fourier series representation
Normally, we prefer symmetry (even or odd) periodic extension instead of normal periodic extension, since symmetry function will provide zero coefficient of either a_{n} or b_{n}.

Assignment-1

Q. 1 If $f(x)=\left(\frac{\pi-n}{2}\right)^{2}$ in the interval $0<x<2 \pi$, show that
$f(x)=\frac{\pi}{12}^{2}+\sum_{n=1}^{\infty} \frac{0 \operatorname{sen} x}{n^{2}}$ hence obtain the following relations:
(ii) $\quad \frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\cdots n \ldots \ldots \ldots \ldots \ldots \ldots \ldots=\frac{\pi^{2}}{12}$
(iii) $\frac{1}{1^{2}}+\frac{1}{8^{2}}+\frac{1}{5^{2}}+\cdots$ $=\frac{\pi^{2}}{8}$
Q. 2 : Expand $f(x)=|\cos n|$ as a fourier $\operatorname{ser} 19 \theta-\pi \approx x<\pi$.
Q.3: Expand $t(x)=|\operatorname{sins}|$ as a Fourier series in the interval, $-\pi<x<\pi$
Q. 4 Obtain a fourier series to represent $\theta^{-a} \operatorname{trom} x--\pi$ to $x-\pi$ hence derive series for $\frac{\pi}{\sinh \pi}$

Where wis a non- integral, hence deduce that

$$
\pi \operatorname{cosec}(w x)=\sum_{n=0}^{\infty}(-1)^{n}\left[\frac{1}{n+w}+\frac{1}{n+1-w}\right]
$$

Assignment-2

Q. 1:Find the fourier series of the function

Q.2:Find fourier series for $f(x)=\int_{\sin x}^{0,-\pi N} x$

And hence deduce that
(i) $\frac{1}{1 . a}+\frac{1}{3 \cdot \varepsilon}+\frac{1}{\varepsilon .-7}+\ldots \ldots \ldots=\frac{1}{2}$
(ii) $\frac{1}{1.3}-\frac{1}{3.8}+\frac{1}{E-7}-\ldots \ldots \ldots=\frac{\pi-2}{4}$
Q.3: Obtain the Fourier series for the function

where $f(x+2)=f(x)$
Q.5: Find the half-range series for the function $f(x)=(x-1)^{2}$

In the interval $O \times \pi \times 1$ and show that
(1)

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{a^{2}}+\cdots \ldots \ldots \ldots \ldots \ldots \ldots, \ldots, \ldots, \ldots, m^{2}
$$

(ii)

$$
\frac{2}{x^{x}}-\frac{1}{2^{x}}+\frac{1}{3^{x}}-\cdots \ldots \ldots \ldots \ldots \ldots
$$

$$
\text { (111) } \frac{1}{1^{2}}+\frac{1}{x^{i}}-\frac{1}{x^{2}}-\cdots
$$

$$
=\frac{\pi s}{\leftrightarrows}
$$

Assignment-3

Q. 1 Obtain the Fourier Series of a Function
$f(x)=\sin (x)$ in the inteval $-\pi \propto x<\pi$
Q.2: Find the half range sine and cosine series of the function

$$
f(x)=\left\{\begin{array}{l}
x, 0<x<\frac{\pi}{4} \\
G, \frac{\pi}{2}<x<\pi
\end{array}\right.
$$

Q.3: Find a series of cosines of multiples of x which will represent

$$
\text { Nsins } \text { in interval }(-\pi, \pi) \text { and show that } \frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\quad \ldots \ldots \ldots=\frac{\pi-2}{4}
$$

Q.4: Find fourier series for function $f(x)=\sqrt{1-\cos \pi}$ in $(-\pi \cdot \pi)$
Q.5:Draw the graph of wave forms \& find fourier series for all wave forms
Q.6:Find the Fourier expansion for $f(x)=\pi x$ from $x=-c$ to $x=c$
Q.7.Find the Fourier series to represent $f(x)=x^{2}-2$, where $-2 \leq x \leq 2$
Q.8.Obtain a half-range cosine series for
$f(x)\left\{\begin{array}{l}k x \quad \text { for } \theta \text { on } x \text { on } \frac{1}{2} \\ k(1-x)\end{array}\right.$

Thank you

