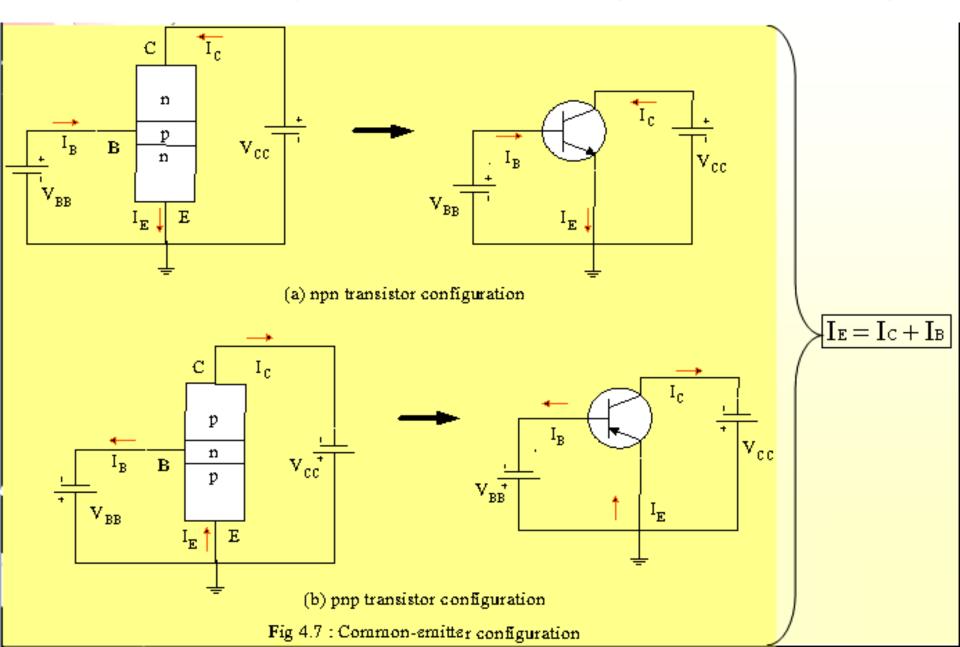
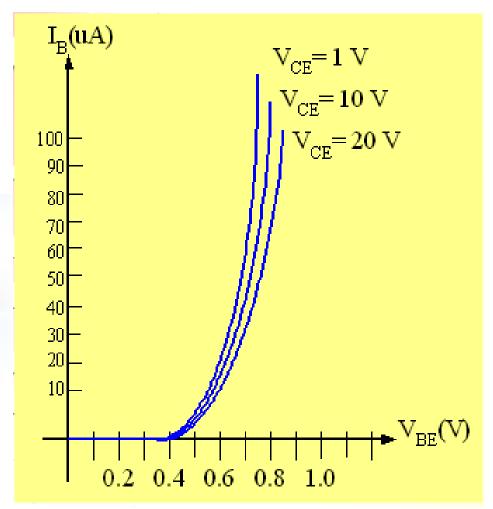


OBJECTIVE

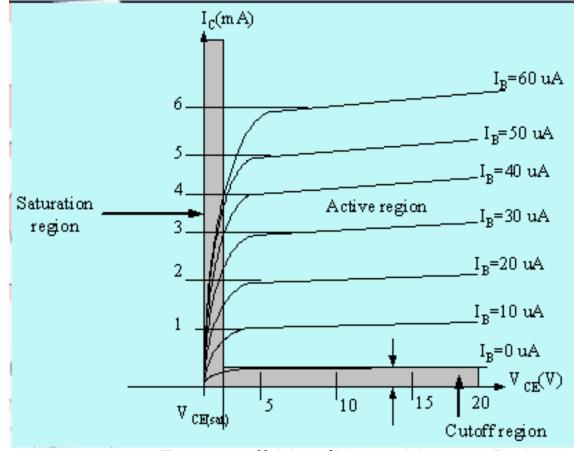
BJT


Common-Emitter Configuration

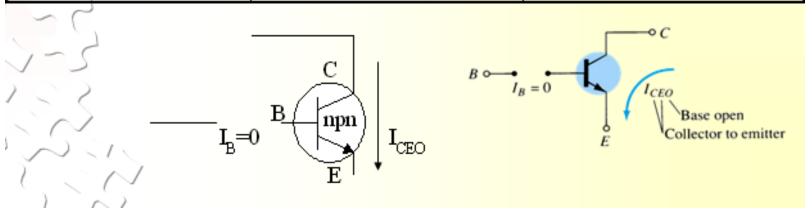

- It is called common-emitter configuration since :
 - emitter is common or reference to both input and output terminals.
 - emitter is usually the terminal closest to or at ground

potential.

- Almost amplifier design is using connection of CE due to the high gain for current and voltage.
- Two set of characteristics are necessary to describe the behavior for CE; input (base terminal) and output (collector terminal) parameters.


Proper Biasing common-emitter configuration in active region

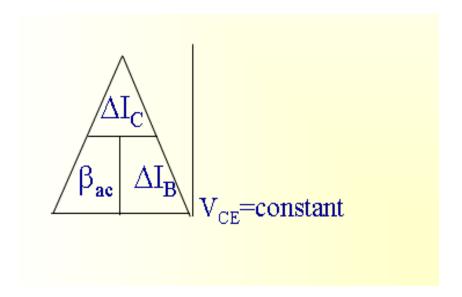
Input characteristics for a common-emitter NPN transistor


- I_B is microamperes compared to miliamperes of I_C.
- I_B will flow when $V_{BE} > 0.7V$ for silicon and 0.3V for germanium
- Before this value I_B is very small and no I_B.
- Base-emitter junction is forward bias
- Increasing V_{CE} will reduce I_B for different values.

Output characteristics for a common-emitter npn transistor

- For small V_{CE} (V_{CE} < V_{CESAT} , I_{C} increase linearly with increasing of V_{CE}
- $V_{CE} > V_{CESAT} I_{C}$ not totally depends on $V_{CE} \rightarrow$ constant I_{C}
- $I_B(uA)$ is very small compare to I_C (mA). Small increase in I_B cause big increase in I_C
- $I_B=0 A \rightarrow I_{CEO}$ occur.
- Noticing the value when $I_C=0A$. There is still some value of current flows.

Active region	Saturation region	Cut-off region
 B-E junction is forward bias C-B junction is reverse bias 	• B-E and C-B junction is forward bias, thus the values of I_B and I_C is too big.	• region below I _B =0µA is to be avoided if an undistorted o/p signal is required
 can be employed for voltage, current 	 The value of V_{CE} is so small. 	B-E junction and C-B junction is reverse bias
and power amplification	 Suitable region when the transistor as a logic switch. 	• $I_B=0$, I_C not zero, during this condition $I_C=I_{CEO}$ where is this
	 NOT and avoid this region when the transistor as an amplifier. 	current flow when B-E is reverse bias.


Beta (β) or amplification factor

- The ratio of dc collector current (IC) to the dc base current (IB) is dc beta (β dc) which is dc current gain where IC and IB are determined at a particular operating point, Qpoint (quiescent point).
- It's define by the following equation:

$$30 < \beta dc < 300 \rightarrow 2N3904$$

• On data sheet, $\beta_{dc} = h_{FE}$ with h is derived from ac hybrid equivalent cct. FE are derived from forward-current amplification and common-emitter configuration respectively.

- For ac conditions an ac beta has been defined as the changes of collector current (I_C) compared to the changes of base current (I_B) where I_C and I_B are determined at operating point.
- On data sheet, $\beta_{ac} = h_{fe}$
- It can defined by the following equation:

Relationship analysis between a and β

CASE 1
$$I_{E} = I_{C} + I_{B}$$
 (1) subtitute equ.
$$I_{C} = \beta I_{B} \text{ into } (1) \text{ we get}$$

$$I_{E} = (\beta + 1)I_{B}$$

known :
$$\alpha = \frac{I_c}{I_E} \Rightarrow I_E = \frac{I_c}{\alpha}$$
 (2)

known :
$$\beta = \frac{I_c}{I_B} \Rightarrow I_B = \frac{I_c}{\beta}$$
 (3)

subtitute (2) and (3) into (1) we get,

$$\alpha = \frac{\beta}{\beta + 1}$$

and

$$\beta = \frac{\alpha}{1 - \alpha}$$