
## **OBJECTIVE**

# **MOSFETs**

#### n-Channel E-MOSFET showing channel length L and channel width W



#### **Enhancement Mode MOSFET Construction**



The Drain (D) and Source (S) connect to the to n-doped regions
These n-doped regions are not connected via an n-channel without an external voltage

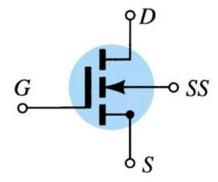
The Gate (G) connects to the p-doped substrate via a thin insulating layer of SiO<sub>2</sub> The n-doped material lies on a p-doped substrate that may have an additional terminal connection called SS

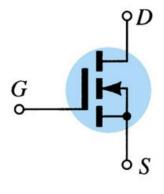
#### **Specification Sheet**

#### MAXIMUM RATINGS

| Rating                                                                | Symbol          | Value       | Unit        |
|-----------------------------------------------------------------------|-----------------|-------------|-------------|
| Drain-Source Voltage                                                  | V <sub>DS</sub> | 25          | Vdc         |
| Drain-Gate Voltage                                                    | V <sub>DG</sub> | 30          | Vdc         |
| Gate-Source Voltage*                                                  | V <sub>GS</sub> | 30          | Vdc         |
| Drain Current                                                         | ID              | 30          | mAdc        |
| Total Device Dissipation @ T <sub>A</sub> = 25°C<br>Derate above 25°C | P <sub>D</sub>  | 300<br>1.7  | mW<br>mW/°C |
| Junction Temperature Range                                            | Tj              | 175         | ,c          |
| Storage Temperature Range                                             | Tstg            | -65 to +175 | °C          |

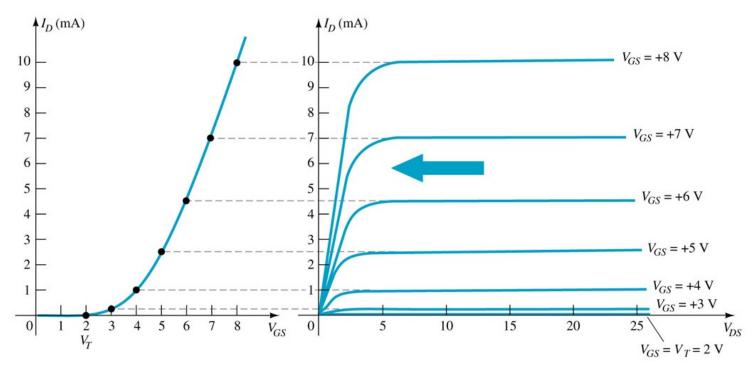



#### ELECTRICAL CHARACTERISTICS ( $T_A = 25^{\circ}$ C unless otherwise noted.


| ELECTRICAL CHARA                                                                | CTERISTICS (T <sub>A</sub> = 25°C unless otherwise noted.)             | Symbol               | Min  | Max      | Unit         |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------|------|----------|--------------|
|                                                                                 | Characteristic                                                         | Symbol               | Min  | Max      | Cint         |
| OFF CHARACTERIST<br>Drain-Source Breakdown<br>( $I_D = 10 \mu A$ , $V_{GS} = 0$ | Voltage                                                                | V <sub>(BR)DSX</sub> | 25   | -        | Vdc          |
| Zero-Gate-Voltage Drain $(V_{DS} = 10 \text{ V}, V_{GS} = 0)$                   | Current                                                                | I <sub>DSS</sub>     | -    | 10<br>10 | nAdc<br>µAdc |
| Gate Reverse Current<br>(V <sub>GS</sub> = ± 15 Vdc, V <sub>DS</sub>            | ; = 0)                                                                 | 1 <sub>GSS</sub>     | -    | ± 10     | pAdc         |
| ON CHARACTERISTIC                                                               | CS .                                                                   |                      |      |          |              |
| Gate Threshold Voltage<br>(V <sub>DS</sub> = 10 V, I <sub>D</sub> = 10          | μΑ)                                                                    | V <sub>GS(Th)</sub>  | 1.0  | 5        | Vdc          |
| Drain-Source On-Voltage<br>(I <sub>D</sub> = 2.0 mA, V <sub>GS</sub> = 1        | (OV)                                                                   | V <sub>DS(on)</sub>  | -    | 1.0      | V            |
| On-State Drain Current<br>(V <sub>GS</sub> = 10 V, V <sub>DS</sub> = 1          | 0 V)                                                                   | I <sub>D(on)</sub>   | 3.0  | -        | mAdc         |
| SMALL-SIGNAL CHAI                                                               | RACTERISTICS                                                           |                      |      |          | •            |
| Forward Transfer Admitta<br>(V <sub>DS</sub> = 10 V, I <sub>D</sub> = 2.0       |                                                                        | y <sub>fs</sub>      | 1000 | -        | μmho         |
| Input Capacitance<br>(V <sub>DS</sub> = 10 V, V <sub>GS</sub> = 0,              | f = 140 kHz)                                                           | Ciss                 | (#)  | 5.0      | pF           |
| Reverse Transfer Capacita<br>$(V_{DS} = 0, V_{GS} = 0, f =$                     |                                                                        | Cns                  | -    | 1.3      | pF           |
| Drain-Substrate Capacitan<br>(V <sub>D(SUB)</sub> = 10 V, f =                   |                                                                        | C <sub>d(sub)</sub>  | -    | 5.0      | pF           |
| Drain-Source Resistance<br>(V <sub>GS</sub> = 10 V, I <sub>D</sub> = 0, f       | = 1.0 kHz)                                                             | F <sub>ds(on)</sub>  | -    | 300      | ohms         |
| SWITCHING CHARAC                                                                | TERISTICS                                                              |                      |      |          |              |
| Turn-On Delay (Fig. 5)                                                          | NUCCESTURE AND SERVICE PRODUCES THE                                    | t <sub>d1</sub>      | -    | 45       | ns           |
| Rise Time (Fig. 6)                                                              | $I_D = 2.0 \text{ mAdc}, V_{DS} = 10 \text{ Vdc},$                     | t,                   | -    | 65       | ns           |
| Turn-Off Delay (Fig. 7)                                                         | (V <sub>GS</sub> = 10 Vdc)<br>(See Figure 9; Times Circuit Determined) | t <sub>d2</sub>      | -    | 60       | ns           |
| Fall Time (Fig. 8)                                                              |                                                                        | tf                   | -    | 100      | ns           |

<sup>\*</sup> Transient potentials of ± 75 Volt will not cause gate-oxide failure.

#### **E-MOSFET Symbols**


### *n*-channel



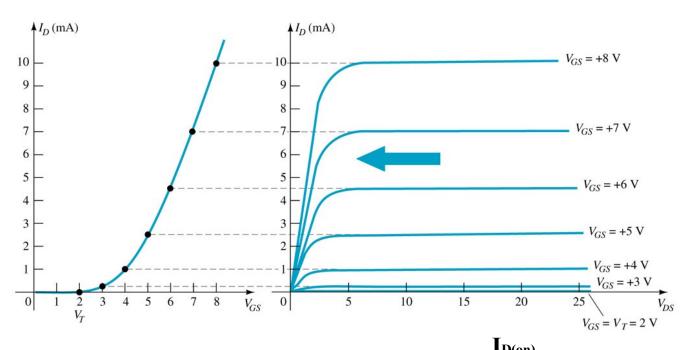


#### **Basic Operation**

The Enhancement mode MOSFET only operates in the enhancement mode.



VGs is always positive


 $I_{DSS} = 0$  when  $V_{GS} < V_T$ 

As V<sub>G</sub>s increases above V<sub>T</sub>, I<sub>D</sub> increases

If VGs is kept constant and VDs is increased, then ID saturates (IDSS)

The saturation level, VDSsat is reached.

#### **Transfer Curve**



To determine ID given VGS:  $I_D = k (V_{GS} - V_T)^2$   $k = \frac{10(01)}{(V_{GS(ON)} - V_T)^2}$  where  $V_T$  = threshold voltage or voltage at which the MOSFET turns on.

k = constant found in the specification sheet

The PSpice determination of k is based on the geometry of the device:

$$k = \left(\frac{W}{L}\right)\left(\frac{KP}{2}\right)$$
 where  $KP = \mu_N C_{OX}$ 

#### p-Channel Enhancement Mode MOSFETs

The p-channel Enhancement mode MOSFET is similar to the n-channel except that the voltage polarities and current directions are reversed.



#### **Summary Table**

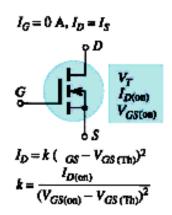
#### **JFET**

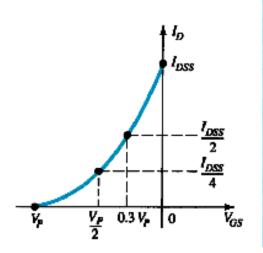
# $I_G = 0 \text{ A}, I_D = I_S$ C $V_P$ $I_{DSS}$ $V_P$

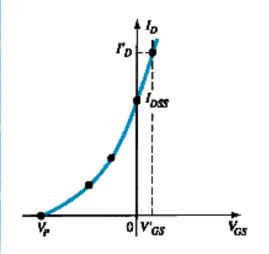
$$I_D = I_{DSS} \left( 1 - \frac{V_{GS}}{V_P} \right)^2$$

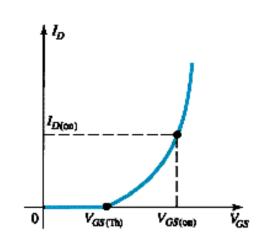
#### **D-MOSFET**

$$I_{O} = 0 \text{ A, } I_{D} = I_{S}$$


$$G \qquad \qquad \downarrow D$$


$$I_{DSS}$$


$$V_{p}$$


$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{p}}\right)^{2}$$

#### **E-MOSFET**







