ELECTRONICS DEVICES AND CIRCUITS

6

OBJECTIVE

ELECTRICAL **CONDUCTIVITY OF** METALS, SEMICONDUCTORS AND INSULATORS.

ENERGY BAND DIAGRAM

• Energy Band Diagram :-

- The range of energies that an electron may possess in an atom is known as the energy band.
- Valence Band
- Conduction Band
- Forbidden Band

- Conductors :-
- The materials in which conduction and valence bands overlap as shown in figure are called conductors.
- → The overlapping indicates a large number of electrons available for conduction.
- → Hence the application of a small amount of voltage results a large amount of current.

Semiconductors :

 \rightarrow The materials, in which the conduction and valence bands are separated by a small energy gap (<3eV) are called semiconductors.

 \rightarrow Silicon and germanium are the commonly used semiconductors.

 \rightarrow A small energy gap means that a small amount of energy is required to free the electrons by moving them from the valence band in to the conduction band.

 \rightarrow The semiconductors behave like insulators at 0⁰K, because no electrons are available in the conduction band.

 \rightarrow If the temperature is further increased, more valence electronics will acquire energy to jump into the conduction band.