WAVEFORM GENERATORS

• Most digital system requires some kind of timing waveform , a source of trigger pulses is required for all clocked sequential systems.

- •In digital systems, a rectangular waveform is most desirable.
- •The generators of rectangular waveforms are referred as multivibrators.

•Three type of Multivibrator:- Astable (free running), monostable (one shot), bistable (flip flop)

Square wave generator (Free Running or Astable Multivibrator)

- The non-sinusoidal waveform generators are also called relaxation oscillators.
- The op-amp relaxation oscillator shown in figure is a square wave generator.
- In general, square waves are relatively easy to produce.
- Like the UJT relaxation oscillator, the circuit's frequency of oscillation is dependent on the charge and discharge of a capacitor C through feedback resistor R,. The "heart" of the oscillator is an inverting op-amp comparator.

- The comparator uses positive feedback that increases the gain of the amplifier.
- comparator circuit offer two advantages.(i) the high gain causes the op-amp's output to switch very quickly from one state to an-other and vice-versa. (ii) the use of positive feedback gives the circuit hysteresis.
- In square-wave generator circuit, the output voltage v_{out} is shunted to ground by two Zener diodes Z_1 and Z_2 connected back-to-back and is limited to either V_Z_2 or $-V_{Z1}$.

- A fraction of the output is feedback to the (+) input terminal.
- Combination of RF and C acting as a low-pass R-C circuit is used to integrate the output voltage Vout and the capacitor voltage v_c is applied to the inverting input terminal in place of external signal.
- The differential input voltage is given as

 $v_{in} = v_c - \beta v_{out}$ Where $\beta = R3/(R3+R2)$ When v_{in} is positive, $v_{out} = -V_{z1}$ and when v_{in} is negative $v_{out} = +V_{z2}$. •Consider an instant of time when $v_{in} < 0$.

•At this instant $v_{out} = + V_{z2}$, and the voltage at the n (+) terminal is βV_{z2} , the capacitor C charges exponentially towards V_{z2} , with a time constant $R_f C$. The output voltage remains constant at V_{z2} until v_c equal βV_{z2} .

•When it happens, comparator o/p reverses to $-V_{z1}$. Now v_c changes exponential towards

•(negative)V_{z1} with the same time constant and a gain the output makes a transition from $-V_{z1}$ to + V_{z2} when v_c equals $-\beta V_{z1}$

Let
$$V_{z1} = V_{z2}$$

- The time period, T, of the output square wave is determined using charging and discharging phenomena of the capacitor C.
- The voltage across the capacitor, v_c when it is charging from – B V_z to + V_z is given by $V_c = Vz[1-(1+\beta)]e^{-t/\tau}$ Where $\tau = R_fC$
- The waveforms of the capacitor voltage v_c and output voltage v_{out} (or v_z) are shown in figure.

Output and Capacitor Voltage Waveforms

- When t = T/2 $V_c = +\beta V_{z \text{ or}} + \beta V_{out}$ Therefore $\beta V_z = V_z [1-(1+\beta)e^{-T/2\tau}]$
- $e^{-T/2\tau} = 1 \beta/1 + \beta$
- $T = 2\tau \log_e 1 + \beta/1 \beta = 2R_f C \log_e [1 + (2R_2/R_1)]$

• The frequency, f = 1/T, of the square-wave is independent of output voltage V_{out} .

• This circuit is also known as free-running or astable multivibrator because it has two quasi-stable states.

•The output remains in one state for time T_1 and then makes an abrupt transition to the second state and re-mains in that state for time T_2 .

•The cycle repeats itself after time $T = (T_1 + T_2)$ where T is the time period of the square-wave.

•The op-amp square-wave generator is useful in the frequency range of about 10 Hz -10 kHz.

PULSE GENERATOR (MONOSTABLE MULTIVIBRATOR)

- A monostable multivibrator (MMV) has one stable state and one quasi-stable state.
- The circuit remains in its stable state till an external triggering pulse causes a transition to the quasi-stable state.
- The circuit comes back to its stable state after a time period T.
- Thus it generates a single output pulse in response to an input pulse and is referred to as a one-shot or single shot.

- Monostable multivibrator circuit is obtained by modifying the astable multivibrator circuit by connecting a diode D₁ across capacitor C so as to clamp v_c at v_d during positive excursion.
- Under steady-state condition, this circuit will remain in its stable state with the output $V_{OUT} = + V_{OUT}$ or $+ V_z$ and the capacitor C is clamped at the voltage V_D (on-voltage of diode $V_D = 0.7$ V).
- The voltage V_D must be less than βV_{OUT} for $v_{in} < 0$. The circuit can be switched to the other state by applying a negative pulse with amplitude greater than $\beta V_{OUT} V_D$ to the non-inverting (+) input terminal.

- When a trigger pulse with amplitude greater than $\beta V_{OUT} V_D$ is applied, v_{in} goes positive causing a transition in the state of the circuit to $-V_{out}$.
- The capacitor C now charges exponentially with a time constant $\tau = R_f C$ toward V_{OUT} (diode D_I being reversebiased). When capacitor voltage v_c becomes more negative than – βV_{OUT} , v_{in} becomes negative and, therefore, output swings back to + V_{OUT} (steady- state output).
- The capacitor now charges towards + V_{OUT} till v_c attain V_D and capacitor C becomes clamped at V_D . The trigger pulse, capacitor voltage waveform and output voltage waveform are shown in figures respectively.

- The width of the trigger pulse T must be much smaller than the duration of the output pulse generated i.e. T_{P} « T.
- For reliable operation the circuit should not be triggered again before T.
- During the quasi-stable state, the capacitor voltage is given as

•
$$v_c = -V_{OUT} + (V_{OUT} + V_D)e^{-t/\tau}$$

At instant t = T, $V_c = -\beta V_{OUT}$
So - $\beta V_{OUT} = -V_{OUT +} (V_{OUT +} V_D)_e - T/\tau \text{ or}$

- $T = R_f C \log_e (1 + V_D / V_{OUT}) / 1 \beta$
- Usually $V_D << V_{OUT}$ and if R2 = R3 so that if β = R3/(R2+R3) = $\frac{1}{2}$ then,
- $T = R_f C \log_e 2 = 0.693 R_f C$

Triangular Waveform Generator

- The op-amp triangular-wave generator is another example of a relaxation oscillator.
- We know that the integrator output waveform will be triangular if the input to it is a square-wave.
- It means that a triangular-wave generator can be formed by simply cascading an integrator and a square-wave generator, as illustrated in figure.
- This circuit needs a dual op-amp, two capacitors, and at least five resistors.

- The rectangular-wave output of the squarewave generator drives the integrator which produces a triangular output waveform.
- The rectangular-wave swings between $+V_{sat}$ and $-V_{sat}$ with a time period determined from equation.
- The triangular-waveform has the same period and frequency as the square-waveform.
- Peak to-peak value of output triangularwaveform can be obtained from the following equation. $V_{out}(p-p) = v_{in}/4 f R_5 C_2$

- The input of integrator A_2 is a square wave and its output is a triangular waveform, the output of integrator will be triangular wave only when $R_4 C_2 > T/2$ where T is the (period of square wave.
- R_4C_2 should be equal to T.
- It may also be necessary to shunt the capacitor C_2 with resistance $R_5 = 10 R_4$ and connect an offset volt compensating network at the (+) input terminal of op-amp A_2 so as to obtain a stable triangular wave.
- Since the frequency of the triangular-wave generator like any other oscillator, is limited by the op-amp slew-rate, a high slew rate op-amp, like LM 301, should be used for the generation of relatively higher frequency waveforms.

SAWTOOTH WAVE GENERATOR

