Linear Filtering of a Random Signal

Linear System

 $L\{a_1X(t_1) + a_2X(t_2)\} = a_1L\{X(t_1)\} + a_2L\{X(t_2)\}.$

• Our goal is to study the output process statistics in terms of the input process statistics and the system function.

Memoryless Systems

The output Y(t) in this case depends only on the present value of the input X(t). i.e., $Y(t) = g\{X(t)\}$.

Linear Time-Invariant Systems

Time-Invariant System

Shift in the input results in the same shift in the output.

 $Y(t) = L\{X(t)\} \Longrightarrow L\{X(t-t_0)\} = Y(t-t_0)$

Linear Time-Invariant System A linear system with time-invariant property.

Linear Filtering of a Random Signal

Theorem 6.1

$$E[Y(t)] = E\left[\int_{-\infty}^{\infty} h(\tau)X(t-\tau)d\tau\right] = \int_{-\infty}^{\infty} h(\tau)E[X(t-\tau)]d\tau$$

$$= E[X(t)] * h(t)$$

Theorem 6.2

If the input to an LTI filter with impulse response h(t) is a wide sense stationary process X(t), the output Y(t) has the following properties:

(a) Y(t) is a WSS process with expected value

$$\mu_Y = E[Y(t)] = \mu_X \int_{-\infty}^{\infty} h(\tau) d\tau$$

autocorrelation function $\int_{-\infty}^{\infty} h(u) \int_{-\infty}^{\infty} h(v) R_X(\tau + u - v) du dv$

(b) X(t) and Y(t) are jointly WSS and have I/O cross- correlation by

$$R_{XY}(\tau) = \int_{-\infty}^{\infty} h(u) R_X(\tau - u) du = R_X(\tau) * h(\tau)$$

(c) The output autocorrelation is related to the I/O cross-correlation by $R_{v}(\tau) = \int_{-\infty}^{\infty} h(-w)$

$$R_{Y}(\tau) = \int_{-\infty}^{\infty} h(-w) R_{XY}(\tau - w) dw$$
$$= R_{XY}(\tau) * h(-\tau)$$