CYCLIC CODES

Cyclic codes are of interest and importance because

- They posses rich algebraic structure that can be utilized in a variety of ways.
- They have extremely concise specifications.
- They can be efficiently implemented using simple shift registers.
- Many practically important codes are cyclic.

Convolution codes allow to encode streams od data (bits).

IIMPORTANT NOTE

- In order to specify a binary code with 2^{k} codewords of length n one may need
10 write down
$\square \quad 2^{k}$
- codewords of length n.
- In order to specify a linear binary code with 2^{k} codewords of length n it is sufficient
- to write down
- k
codewords of length n.
- In order to specify a binary cyclic code with 2^{k} codewords of length n it is sufficient
to write down
ㅁ
- codeword of length n.

BASIC DEFINITION AND EXAMPLES

-Definition A codeC is cyclic if -(i) C is a linear code;
(ii) any cyclic shift of a codeword is also a codeword, i.e. whenever $a_{0}, \ldots a_{n-1} \in C$, then also $a_{n-1} a_{0} \ldots a_{n-2} \in C$.
Example
(i) Code $C=\{000,101,011,110\}$ is cyclic.
(ii) Hamming code $\operatorname{Ham}(3,2)$: with the generator matrix
is equivalent to a cyclic code.

$$
G=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

(iii) The binary linear code $\{0000,1001,0110,1111\}$ is not a cyclic, but it is equivalent to a cyclic code.
(iv) Is Hamming code $\operatorname{Ham}(2,3)$ with the generator matrix

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 2
\end{array}\right)
$$

(a) cyclic?
(b) equivalent to a cyclic code?

FREQUENCY of CYCLIC CODES

םComparing with linear codes, the cyclic codes are quite scarce. For, example there are 11811 linear $(7,3)$ linear binary codes, but only two of them are cydic.
\square Trivial cyclic codes. For any field F and any integer $n>=3$ there are al ways the following cyclic codes of length n over F :

- No-information code-code consisting of just one all-zero codeword.
- Repetition code-code consisting of codewords (a, a, \ldots, a) for $a \in F$.
- Single-parity-check code - code consisting of all codewords with parity 0.
- No-parity code - code consisting of all codewords of length n
-For some cases, for example for $n=19$ and $F=G F(2)$, the above four trivial cyclic codes are the only cyclic codes.

EXAMPLE of a CYCLIC CODE

-The code with the generator matrix
qhas codewords

$$
G=\left(\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

$\square \quad C_{1}=1011100 \quad C_{2}=0101110 \quad C_{3}=0010111$
$\square c_{1}+C_{2}=1110010 c_{1}+C_{3}=1001011 c_{2}+C_{3}=0111001$ $\mathrm{aC}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}=1100101$
aand it is cyclic because the right shifts have the following impacts
ㅁ $\quad C_{1} \rightarrow C_{2}$,
$C_{2} \rightarrow C_{3}$
$\mathrm{C}_{3} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{3}$
\square

$$
\begin{gathered}
C_{1}+C_{2} \rightarrow C_{2}+C_{3}, C_{1}+C_{3} \rightarrow C_{1}+C_{2}+C_{3}, \quad C_{2}+C_{3} \rightarrow C_{1} \\
\square C_{1}+C_{2}+C_{3} \rightarrow C_{1}+C_{2}
\end{gathered}
$$

POLYNOMIALS over GF(q)

\square A codeword of a cyclic code is usually denoted

$$
\square a_{0} a_{1} \ldots a_{n-1}
$$

and to each such a codeword the polynomial

$$
\square a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}
$$

ais associated.

- $F_{q}[x]$ denotes the set of all polynomials over GF (q).
- $\operatorname{deg}(f(x))=$ the largest m such that x^{m} has a non-zero coefficient in $f(x)$.

Multiplication of polynomials If $f(x), g(x) \in F_{\mathrm{q}}[x]$, then

$$
\operatorname{deg}(f(x) g(x))=\operatorname{deg}(f(x))+\operatorname{deg}(g(x)) .
$$

Division of polynomials For every pair of polynomials $\mathrm{a}(x), \mathrm{b}(x) \neq 0$ in $F_{\mathrm{q}}[x]$ there exists a unique pair of polynomials $\mathrm{q}(x), \mathrm{r}(x)$ in $F_{\mathrm{q}}[x]$ such that

$$
\mathrm{a}(x)=\mathrm{q}(x) \mathrm{b}(x)+\mathrm{r}(x), \operatorname{deg}(\mathrm{r}(x))<\operatorname{deg}(\mathrm{b}(x)) .
$$

Example Divide $x^{3}+x+1$ by $x^{2}+x+1$ in $F_{2}[x]$.
Definition Let $f(x)$ be a fixed polynomial in $F_{\mathrm{q}}[x]$. Two polynomials $g(x), h(x)$ are said to be congruent modulo $f(x)$, notation

$$
\mathrm{g}(x) \equiv \mathrm{h}(x)(\bmod \mathrm{f}(x)),
$$

if $\mathrm{g}(\mathrm{x})-\mathrm{h}(x)$ is divisible by $\mathrm{f}(x)$.

RING of POLYNOMIALS

-The set of polynomials in $F_{\mathrm{g}}[x]$ of degree less than $\operatorname{deg}(f(x))$, with addition and multiplication modulo $\mathrm{f}(\mathrm{x}$) forms a ring denotéd $\mathrm{F}_{\mathrm{q}}[\mathrm{x}] / \mathrm{F}(\mathrm{x})$.
\square Example Calculate $(x+1)^{2}$ in $F_{2}[x] /\left(x^{2}+x+1\right)$. It holds

$$
\square(x+1)^{2}=x^{2}+2 x+1=x^{2}+1=x\left(\bmod x^{2}+x+1\right) .
$$

-How many elements has $F_{[}[x] / f(x)$?
\square Result $\left|F_{q}[x] / f(x)\right|=q \operatorname{deg}(f(x))$.
-ExampleAddition and multiplication in $\mathrm{F}_{2}[\mathrm{x}] /\left(\mathrm{x}^{2}+\mathrm{x}+1\right)$

+	0	1	x	$1+x$
0	0	1	x	$1+x$
1	1	0	$1+x$	x
x	x	$1+x$	0	1
$1+x$	$1+x$	x	1	0

\bullet	0	1	x	$1+x$
0	0	0	0	0
1	0	1	X	$1+x$
x	0	x	$1+x$	1
$1+x$	0	$1+x$	1	x

Definition A polynomial $f(x)$ in $F_{\mathrm{q}}[x]$ is said to be reducible if $\mathrm{f}(x)=\mathrm{a}(x) \mathrm{b}(x)$, where $\mathrm{a}(x), \mathrm{b}(x) \in F_{\mathrm{q}}[x]$ and

$$
\operatorname{deg}(a(x))<\operatorname{deg}(f(x)), \quad \operatorname{deg}(b(x))<\operatorname{deg}(f(x)) .
$$

If $f(x)$ is not reducible, it is irreducible in $F_{\mathrm{q}}[x]$.
Theorem The ring $F_{\mathrm{q}}[x] / f(x)$ is a field if $f(x)$ is irreducible in $F_{\mathrm{q}}[x]$.

FIELD $R_{n}, R_{\mathrm{n}}=F_{\mathrm{q}}[x] /\left(x^{\mathrm{n}}-1\right)$

-Computation modulo $x^{n}-1$
םSince $x^{n} \equiv 1\left(\bmod x^{n}-1\right)$ we can compute $f(x) \bmod x^{n}-1$ as follow: al $n f(x)$ replace x^{n} by $1, x^{n+1}$ by x, x^{n+2} by x^{2}, x^{n+3} by x^{3}, \ldots
aldentification of words with polynomials

$$
\square a_{0} a_{1} \ldots a_{n-1} \leftrightarrow a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}
$$

-Multiplication by x in R_{n} corresponds to a single cydic shift

$$
\square x\left(a_{0}+a_{1} x+\ldots a_{n-1} x^{n-1}\right)=a_{n-1}+a_{0} x+a_{1} x^{2}+\ldots+a_{n-2} x^{n-1}
$$

Algebraic characterization of cyclic codes

- Theorem A code C is cyclic if C satisfies two conditions
- (i) $a(x), b(x) \in C \Rightarrow a(x)+b(x) \in C$
(ii) $a(x) \in C, r(x) \in R_{n} \Rightarrow r(x) a(x) \in C$
- Proof
- (1) Let C be a cyclic code. C is linear \Rightarrow (i) holds.
- (ii) Let $a(x) \in C, r(x)=r_{0}+r_{1} x+\ldots+r_{n-1} x^{n-1}$

$$
\text { - } r(x) a(x)=r_{0} a(x)+r_{1} x a(x)+\ldots+r_{n-1} x^{n-1} a(x)
$$

- is in C by (i) because summands are cyclic shifts of $a(x)$.
- (2) Let (i) and (ii) hold
- Taking $r(x)$ to be a scalar the conditions imply linearity of C.
- Taking $r(x)=x$ the conditions imply cyclicity of C.

CONSTRUCTION of CYCLIC CODES

${ }_{\square}$ N otation If $f(x) \in R_{n}$, then

$$
\square f(x)\rangle=\left\{r(x) f(x) \mid r(x) \in R_{n}\right\}
$$

\square (multiplication is modulo $x^{n}-1$).
Theorem For any $f(x) \in R_{n}$, the set $\langle f(x)\rangle$ is a cyclic code (generated by f).
aProof We check conditions (i) and (ii) of the previous theorem.
a(i) If $a(x) f(x) \in\langle f(x)\rangle$ and $b(x) f(x) \in\langle f(x)\rangle$, then

$$
\square a(x) f(x)+b(x) f(x)=(a(x)+b(x)) f(x) \in\langle f(x)\rangle
$$

\square (ii) If $a(x) f(x) \in\langle f(x)\rangle, r(x) \in R_{n}$, then

$$
\operatorname{ar}(x)(a(x) f(x))=(r(x) a(x)) f(x) \in\langle f(x)\rangle \text {. }
$$

Example $C=\left\langle 1+x^{2}\right\rangle, n=3, q=2$.
We have to compute $r(x)\left(1+x^{2}\right)$ for all $r(x) \in R_{3}$.

$$
R_{3}=\left\{0,1, x, 1+x, x^{2}, 1+x^{2}, x+x^{2}, 1+x+x^{2}\right\} .
$$

Result

$$
\begin{gathered}
C=\left\{0,1+x, 1+x^{2}, x+x^{2}\right\} \\
C=\{000,011,101,110\}
\end{gathered}
$$

Characterization theorem for cyclic codes

-We show that all cyclic codes C have the form $C=\langle f(x)\rangle$ for some $f(x) \in R_{n}$. \square Theorem Let C be a non-zero cyclic code in R_{n}. Then

- there exists unique monic polynomial $g(x)$ of the smallest degree such that
- $C=\langle g(x)\rangle$
- $g(x)$ is a factor of $x^{n}-1$.

Proof

(i) Suppose $\mathrm{g}(x)$ and $\mathrm{h}(x)$ are two monic polynomials in C of the smallest degree. Then the polynomial $g(x)-h(x) \in C$ and it has a smaller degree and a multiplication by a scalar makes out of it a monic polynomial. If $g(x) \neq h(x)$ we get a contradiction.
(ii) Suppose $a(x) \in C$.

Then

$$
a(x)=q(x) g(x)+r(x) \quad(\operatorname{deg} r(x)<\operatorname{deg} g(x))
$$

and

$$
\mathrm{r}(x)=\mathrm{a}(x)-\mathrm{q}(x) \mathrm{g}(x) \in C .
$$

By minimality

$$
r(x)=0
$$

and therefore $\mathrm{a}(x) \in\langle\mathrm{g}(x)\rangle$.

Characterization theorem for cyclic codes

-(iii) Clearly,

$$
\square x^{n}-1=q(x) g(x)+r(x) \text { with } \operatorname{deg} r(x)<\operatorname{deg} g(x)
$$

aand therefore $\quad r(x) \equiv-q(x) g(x)\left(\bmod x^{n}-1\right)$ and

$$
\text { ar }(x) \in C \Rightarrow r(x)=0 \Rightarrow g(x) \text { is a factor of } x^{n}-1 \text {. }
$$

GENERATOR POLYNOMIALS

Definition If for a cyclic code C it holds

$$
C=\langle g(x)\rangle,
$$

then g is called the generator polynomial for the code C.

HOW TO DESIGN CYCLIC CODES?

-The last claim of the previous theorem gives a recipe codes of given length n.
al ndeed, all we need to do is to find all factors of

$$
\square X^{n}-1
$$

aProblem: Find all binary cyclic codes of length 3.
\square Solution: Since

$$
\square X^{3}-1=\quad \quad \underbrace{(X)}_{(X \neq 1)\left(X^{2}\right.}
$$

-

awe have the following generator polynomials and codes.

Design of generator matrices for cyclic codes

- Theorem Suppose C is a cyclic code of codewords of length n with the generator polynomial

$$
\text { - } g(x)=g_{0}+g_{1} x+\ldots+g_{r} x^{r} .
$$

- Then $\operatorname{dim}(C)=n-r$ and a generator matrix G_{1} for C is

Proof

$$
G_{1}=\left(\begin{array}{cccccccccc}
g_{0} & g_{1} & g_{2} & \ldots & g_{r} & 0 & 0 & 0 & \ldots & 0 \\
0 & g_{0} & g_{1} & g_{2} & \ldots & g_{r} & 0 & 0 & \ldots & 0 \\
0 & 0 & g_{0} & g_{1} & g_{2} & \ldots & g_{r} & 0 & \ldots & 0 \\
. . & . . & & & & & & & & . . \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 & g_{0} & \ldots & g_{r}
\end{array}\right)
$$

(i) All rows of G_{1} are linearly independent.
(ii) The $n-r$ rows of G represent codewords

$$
g(x), x g(x), x^{2} g(x), \ldots, x^{n-r-1} g(x)
$$

(*)
(iii) It remains to show that every codeword in C can be expressed as a linear combination of vectors from (*).
Inded, if $\mathrm{a}(\mathrm{x}) \in C$, then

$$
\mathrm{a}(x)=\mathrm{q}(x) \mathrm{g}(x)
$$

Since $\operatorname{deg} \mathrm{a}(x)<\mathrm{n}$ we have $\operatorname{deg} \mathrm{q}(x)<\mathrm{n}-\mathrm{r}$.
Hence

$$
\begin{aligned}
q(x) g(x) & =\left(q_{0}+q_{1} x+\ldots+q_{n-r-1} x^{n-r-1}\right) g(x) \\
& =q_{0} g(x)+q_{1} x g(x)+\ldots+q_{n-r-1} x^{n-r-1} g(x) .
\end{aligned}
$$

EXAMPLE

-Thetask is to determineall ternary codes of length 4 and generators for them. - Factorization of $x^{4}-1$ over GF (3) has theform

$$
\square x^{4}-1=(x-1)\left(x^{3}+x^{2}+x+1\right)=(x-1)(x+1)\left(x^{2}+1\right)
$$

ㅁThereforethereare $2^{3}=8$ divisors of $x^{4}-1$ and each generates a cyclic code.

Generator polynomial

- 1

ㅁ x

ㅁ

ㅁ

$$
x+1
$$

$$
x^{2}+1
$$

$$
(x-1)(x+1)=x^{2}-1
$$

- $(x-1)\left(x^{2}+1\right)=x^{3}-x^{2}+x-1$

ㅁ $(x+1)\left(x^{2}+1\right)$
ㅁ $\quad x^{4}-1=0$
ㅁ $(x-1)(x+1)=x^{2}-1$

$$
x^{4}-1=0
$$

Generator matrix
$\left[\begin{array}{cccc}-1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1\end{array}\right]$

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Check polynomials and parity check matrices for cyclic codes

ㅁ.Let C be a cyclic $[\mathrm{n}, \mathrm{k}]$-code with the generator polynomial $\mathrm{g}(\mathrm{x})$ (of degreen -
$k)$. By the last theorem $g(x)$ is a factor of $x^{n}-1$. Hence

$$
a x^{n}-1=g(x) h(x)
$$

afor some $h(x)$ of degreek (where $h(x)$ is called the check polynomial of C). Theorem Let C be a cyclic code in R_{n} with a generator polynomial $g(x)$ and a check polynomial $h(x)$. Then an $\mathrm{C}(\mathrm{x}) \in \mathrm{R}_{\mathrm{n}}$ is a codeword of C if $\mathrm{C}(\mathrm{x}) \mathrm{h}(\mathrm{x}) \equiv 0$ this and next congruences are modulo $x^{n}-1$.

Proof Note, that $\mathrm{g}(x) \mathrm{h}(x)=x^{n}-1 \equiv 0$
(i) $\mathrm{c}(x) \in \mathrm{C} \Rightarrow \mathrm{c}(x)=\mathrm{a}(x) \mathrm{g}(x)$ for some $\mathrm{a}(x) \in R_{\mathrm{n}}$

$$
\Rightarrow \mathrm{c}(x) \mathrm{h}(x)=\mathrm{a}(x) \underbrace{g(x) \mathrm{h}(x)}_{\equiv 0} \equiv 0 .
$$

(ii) $\mathrm{c}(x) \mathrm{h}(x) \equiv 0$

$$
\begin{gathered}
c(x)=q(x) g(x)+r(x), \operatorname{deg} r(x)<n-k=\operatorname{deg} g(x) \\
c(x) h(x) \equiv 0 \Rightarrow r(x) h(x) \equiv 0\left(\bmod x^{n}-1\right)
\end{gathered}
$$

Since $\operatorname{deg}(r(x) h(x))<n-k+k=n$, we have $r(x) h(x)=0$ in $F x]$ and therefore

$$
\mathrm{r}(x)=0 \Rightarrow \mathrm{c}(x)=\mathrm{q}(x) \mathrm{g}(x) \in C .
$$

POLYNOMIAL REPRESENTATION of DUAL CODES

口Since $\operatorname{dim}(\langle h(x)\rangle)=n-k=\operatorname{dim}(C)$ we might easily be fooled to think that the check polynomial $h(x)$ of the code C generates the dual code C .
-Reality is "slightly different":
\square Theorem Suppose C is a cydic [$n, k]$-code with the check polynomial

$$
\square h(x)=h_{0}+h_{1} x+\ldots+h_{k} x^{k}
$$

athen
■(i) a parity-check matrix for C is

$$
H=\left(\begin{array}{ccccccc}
h_{k} & h_{k-1} & \ldots & h_{0} & 0 & \ldots & 0 \\
0 & h_{k} & \ldots & h_{1} & h_{0} & \ldots & 0 \\
. . & . . & & & & & \\
0 & 0 & \ldots & 0 & h_{k} & \ldots & h_{0}
\end{array}\right)
$$

a(ii) C is the cydic code generated by the polynomial

$$
\bar{h}(x)=h_{k}+h_{k-1} x+\ldots+h_{0} x^{k}
$$

ai.e. the reciprocal polynomial of $h(x)$.

POLYNOMIAL REPRESENTATION of DUAL CODES

aProof A polynomial $c(x)=c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1}$ represents a code from C if $c(x) h(x)=0$. For $c(x) h(x)$ to be 0 the coefficients at x^{k}, \ldots, x^{n-1} must be zero, i.e.

$$
\begin{aligned}
& c_{0} h_{k}+c_{1} h_{k-1}+\ldots+c_{k} h_{0}=0 \\
& c_{1} h_{k}+c_{2} h_{k-1}+\ldots+c_{k+1} h_{0}=0 \\
& c_{n-k-1} h_{k}+c_{n-k} h_{k-1}+\ldots+c_{n-1} h_{0}=0
\end{aligned}
$$

-Therefore, any codeword $c_{0} c_{1} \ldots c_{n-1} \in C$ is orthogonal to the word $h_{k} h_{k}$ ${ }_{-1} \ldots h_{0} 00 . . .0$ and to its cyclic shifts.
aRows of the matrix H are therefore in C. M oreover, since $h_{k}=1$, these row-vectors are linearly independent. Their number is $n-k=\operatorname{dim}$ (C). Hence H is a generator matrix for C , i.e. a parity-check matrix for C. 미 n order to show that C is a cyclic code generated by the polynomial

$$
\bar{h}(x)=h_{k}+h_{k-1} x+\ldots+h_{0} x^{k}
$$

ait is sufficient to show $\bar{h}(t)$ at at is a factor of $x^{n}-1$.
\square Observe th $h(x)=x^{k} h\left(x^{-1}\right) \quad$ and since $\quad h\left(x^{-1}\right) g\left(x^{-1}\right)=\left(x^{-1}\right)^{n}-1$
awe have that $\quad x^{k} n\left(x^{-1}\right) x^{n-k} g\left(x^{-1}\right)=x^{n}\left(x^{-n}-1\right)=1-x^{n}$
-and therefdif(x) is indeed a factor of $x^{n}-1$.

ENCODING with CYCLIC CODES I

-Encoding using a cyclic code can be done by a multiplication of two polynomials - a message polynomial and the generating polynomial cyclic code.
aLet C be an (n, k)-code over an field F with the generator polynomial $\square g(x)=g_{0}+g_{1} x+\ldots+g_{r-1} x^{r-1}$ of degree $r=n-k$.
alf a message vector m is represented by a polynomial $m(x)$ of degree k and m is encoded by

$$
\square \mathrm{m} \Rightarrow \mathrm{c}=\mathrm{mG}_{1} \text {, }
$$

athen the following relation between $m(x)$ and $c(x)$ holds

$$
\mathrm{ac}(\mathrm{x})=\mathrm{m}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \text {. }
$$

-Such an encoding can be realized by the shift register shown in Figure bel ow, where input is the k-bit message to be encoded followed by $\mathrm{n}-\mathrm{k} 0^{\prime}$ and the output will be the encoded message.

-Shift-register encodings of cyclic codes. Small circles represent multiplication by the corresponding constant, \oplus nodes represent modular addition, squares are delay elements

ENCODING of CYCLIC CODES II

- A nother method for encoding of cyclic codes is based on the following (so called systematic) representation of the generator and parity-check matrices for cydlic codes.
-Theorem Let C be an (n, k)-code with generator polynomial $g(x)$ and r $=n-k$. For $i=0,1, \ldots, k-1$, let G, be the length n vector whose polynomial is $G_{2 i}(x)=x^{r+H^{\prime}}-x^{r+1}$ mod $g(x)$. Then the $k * n$ matrix G_{2} with row vectors $\mathrm{G}_{2,1}$ i's a generator matrix for C .
aM oreover, if H_{2}, is the length n vector corresponding to polynomial $H_{21}(x)=x$ mod $\mathrm{g}(\mathrm{x})$, then ther $* n$ matrix H_{2} with row vectors $\mathrm{H}_{2,}$ is a parity check matrix'for C. If the message vector m is encoded by ${ }^{2, j}$

$$
\square \mathrm{m} \Rightarrow \mathrm{c}=\mathrm{mG}_{2},
$$

athen the relation between corresponding polynomials is

$$
\square c(x)=x^{r} m(x)-\left[x^{r} m(x)\right] \bmod g(x) .
$$

aOn this basis one can construct the following shift-register encoder. for the case of a systematic representation of the generator for a cydic code:
aShift-register encoder for systematic representation of cyclic codes. Switch A is dosed for first k ticks and closed for last r ticks; switch B is down for first k ticks and up for last r ticks.

Hamming codes as cyclic codes

\square Definition (A gain!) Let r be a positive integer and let H be an r * (2r-1) matrix whose columns are distinct non-zero vectors of $V(r, 2)$. Then the code having H as its parity-check matrix is called binary code denoted by Ham (r,2).
alt can be shown that binary Hamming codes are equivalent to cyclic codes.

Theorem The binary Hamming code $\operatorname{Ham}(r, 2)$ is equivalent to a cyclic code.

Definition If $p(x)$ is an irreducible polynomial of degree r such that x is a primitive element of the field $F x] / p(x)$, then $p(x)$ is called a primitive polynomial.

Theorem If $p(x)$ is a primitive polynomial over $G F(2)$ of degree r, then the cyclic code $\langle\mathbf{p}(x)\rangle$ is the code $\operatorname{Ham}(r, 2)$.

Hamming codes as cyclic codes

Example Polynomial $x^{3}+x+1$ is irreducible over GF (2) and x is primitive element of the field $F_{2}[x] /\left(x^{3}+x+1\right)$.

$$
\begin{gathered}
\square \mathrm{F}_{2}[x] /\left(x^{3}+x+1\right)= \\
\square\left\{0, x, x^{2}, x^{3}=x+1, x^{4}=x^{2}+x, x^{5}=x^{2}+x+1, x^{6}=x^{2}+1\right\}
\end{gathered}
$$

-The parity-check matrix for a cyclic version of H_{2} am $(3,2)$

$$
H=\left(\begin{array}{lllllll}
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

PROOF of THEOREM

The binary Hamming codeH am $(r, 2)$ is equivalent to a cyclic code.
alt is known from algebra that if $p(x)$ is an irreducible polynomial of degreer, then the ring $F_{2}[x] / p(x)$ is a field of order 2 .
aln addition, every finite field has a primitive element. Therefore, there exists an element of $F_{2}[x] / \mathrm{p}(\mathrm{x})$ such that

$$
\square F_{2}[x] / p(x)=\{0,1, \quad, \quad 2, \ldots, 2 r-2\} \text {. }
$$

ㅁLet us identify an element $a_{0}+a_{1}+\ldots a_{r-1} x^{r-1}$ of $F_{2}[x] / p(x)$ with the column vector $\square\left(a_{0}, a_{1}, \ldots, a_{r-1}\right)^{\top}$
םand consider the binary r * $\left(2^{r}-1\right)$ matrix

$$
\mathrm{aH}=\left[\begin{array}{lll}
1 & 2 \ldots & 2^{\uparrow}-2
\end{array}\right] \text {. }
$$

aLet now C be the binary linear code having H as a parity check matrix.
\square Since the columns of H are all distinct non-zero vectors of $V(r, 2), C=H$ am ($r, 2$). - Putting $n=2^{r}-1$ we get

- $C=\left\{f_{0} f_{1} \ldots f_{n-1} \in V(n, 2) \mid f_{0}+f_{1}+\ldots+f_{n-1}{ }^{n-1}=0\right.$
$\square \quad=\left\{(x) \in R_{n} \mid f()=0\right.$ in $\left._{2}[x] / p(x)\right\}$
미 $f(x) \in C$ and $r(x) \in R_{n}$, then $r(x) f(x) \in C$ because

$$
\operatorname{ar}(\mathrm{l}(\mathrm{f})=\mathrm{r}(\mathrm{)} \cdot 0=0
$$

aand therefore, by one of the previous theorems, this version of H am $(r, 2)$ is Cydic.

BCH codes and Reed-Solomon codes

TO the most important cyclic codes for applications belong BCH codes and Reed-Solomon codes.
\square Definition A polynomial p is said to beminimal for a complex number x in Z_{q} if $p(x)=0$ and p is irreducible over Z_{q}.
Definition A cyclic code of codewords of length n over $Z_{q}, q=p^{r}, p$ is a prime, is called BCH code ${ }^{1}$ of distance d if its generator $g(x)$ is the least common multiple of the minimal polynomials for

$$
I+1, \ldots, \quad I+d-2
$$

for some I, where
ω is the primitive n-th root of unity.
If $n=q^{m}-1$ for some m, then the BCH code is called primitive.
Definition A Reed-Solomon code is a primitive BCH code with $n=q-1$.
Properties:

- Reed-Solomon codes are self-dual.
${ }^{1}$ BHC stands for Bose and Ray-Chaudhuri and Hocquenghem who discovered these codes.

