
6. Linear Filtering of a Random Signal
Linear System

Our goal is to study the output process 
statistics in terms of the input process 
statistics and the system function.
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Memoryless Systems
The output Y(t) in this case depends only on the 
present value of the input X(t). i.e.,                   .)}({)( tXgtY 
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Linear Time-Invariant Systems
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Time-Invariant System
Shift in the input results in the same shift in 
the output.

Linear Time-Invariant System
A linear system with time-invariant property.
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By Linearity

By Time-invariance



Theorem 6.1
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Theorem 6.2
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If the input to an LTI filter with impulse response h(t) is a 
wide sense stationary process X(t), the output  Y(t) has the 
following properties:
(a) Y(t) is a WSS process with expected value 

autocorrelation function

(b) X(t) and Y(t) are jointly WSS and have I/O cross- correlation by

(c) The output autocorrelation is related to the I/O 
cross-correlation by
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Example 6.1
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X(t), a WSS stochastic process with expected value 
X = 10 volts, is the input to an LTI filter with

What is the expected value of the filter output process 
Y(t) ?
Sol： Ans: 2(e0.51) V



Example 6.2



 


.otherwise0

,0/1
)(

TtT
th

A white Gaussian noise process X(t) with autocorrelation 
function  RW ( ) = 0 ( ) is passed through the moving-
average filter

For the output Y(t), find the expected value E[Y(t)], the I/O 
cross-correlation RWY ( ) and the autocorrelation RY ( ). 
Sol：
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Theorem 6.3
If a stationary Gaussian process X(t) is the input to an LTI 
Filter h(t) , the output Y(t) is a stationary Gaussian process 
with expected value and autocorrelation given by   
Theorem 6.2.



Example 6.3
For the white noise moving-average process Y(t) in 
Example 6.2, let  0 = 1015 W/Hz and T = 103 s. For an 
arbitrary time t0, find P[Y(t0) > 4106].
Sol： Ans: Q(4) = 3.17105



Theorem 6.4
The random sequence Xn is obtained by sampling the 
continuous-time process X(t) at a rate of 1/Ts samples per 
second. If X(t) is a WSS process with expected value
E[X(t)] = X and autocorrelation RX ( ), then Xn is a WSS 
random sequence with expected value E[Xn] = X and 
autocorrelation function RX [k] = RX (kTs).
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otherwise.0
,10)1.01(10

][   :
6 nn

nRAns Y

Continuing Example 6.3, the random sequence Yn is obtained 
by sampling the white noise moving-average process Y(t) at 
a rate of fs = 104 samples per second. Derive the 
autocorrelation function RY [n] of Yn.
Sol：



Theorem 6.5
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If the input to a discrete-time LTI filter with impulse 
response hn is a WSS random sequence, Xn, the output Yn
has the following properties.  
(a) Yn is a WSS random sequence with expected value

and autocorrelation function 

(b) Yn and Xn are jointly WSS with I/O cross-correlation

(c) The output autocorrelation is related to the I/O cross-
correlation by
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Example 6.5
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A WSS random sequence, Xn, with X = 1 and auto-
correlation function RX[n] is the input to the order M1
discrete-time moving-average filter hn where

For the case M = 2, find the following properties of the 
output random sequence Yn : the expected value Y, the 
autocorrelation RY[n], and the variance Var[Yn].
Sol：
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Example 6.6



 

     
.otherwise0

,1,,1,0/1 MnM
hn





 


otherwise.0

),1(/)(
][   :

22 MnMnMnRAns Y


A WSS random sequence, Xn, with X = 0 and auto-
correlation function RX[n] =  2n is passed through the order
M1 discrete-time moving-average filter hn where

Find the output autocorrelation RY[n].
Sol：
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A first-order discrete-time integrator with WSS input
sequence Xn has output Yn = Xn + 0.8Yn-1 . What is the
impulse response hn ?
Sol：
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Continuing Example 6.7, suppose the WSS input Xn with 
expected value X = 0 and  autocorrelation function

is the input to the first-order integrator hn . Find the 
second moment, E[Yn

2] , of the output.



Theorem 6.6
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If Xn is a WSS process with expected value  and  auto-
correlation function RX[k], then the vector    has correlation
matrix     and expected value         given by 

nXR 
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Example 6.9
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The WSS sequence Xn has autocorrelation function RX[n] as
given in Example 6.5. Find the correlation matrix of

Sol：
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The order M1 averaging filter hn given in Example 6.6 can 
be represented by the M element vector

The input is 

The output vector                                     , then              . 
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