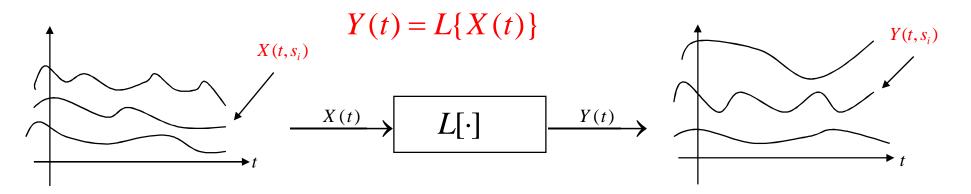
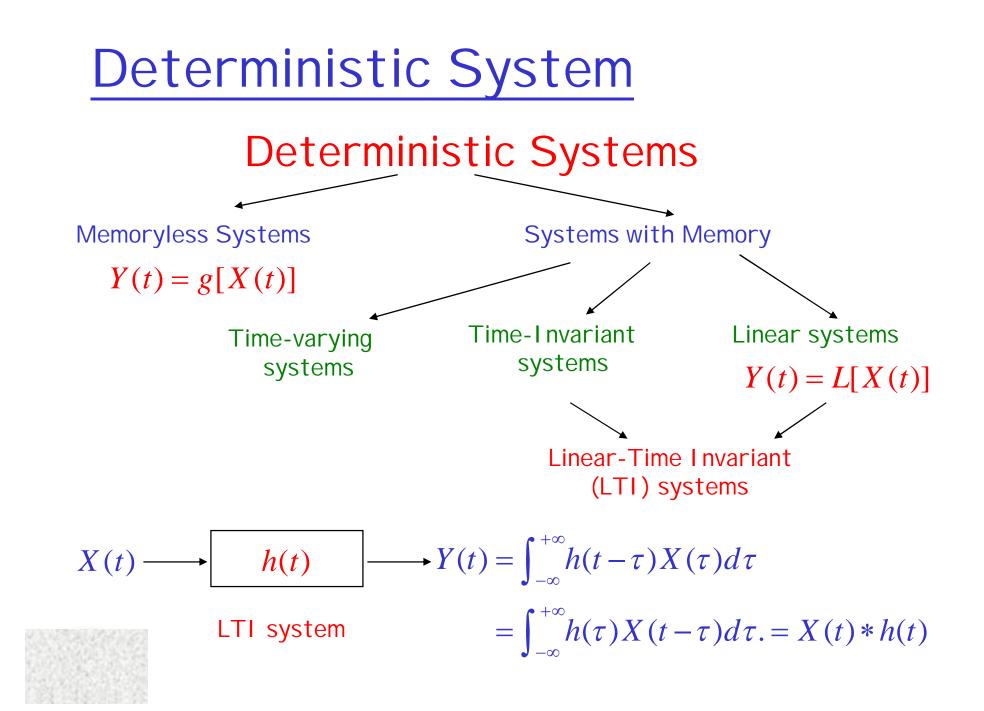
6. Linear Filtering of a Random Signal

Linear System

 $L\{a_1X(t_1) + a_2X(t_2)\} = a_1L\{X(t_1)\} + a_2L\{X(t_2)\}.$

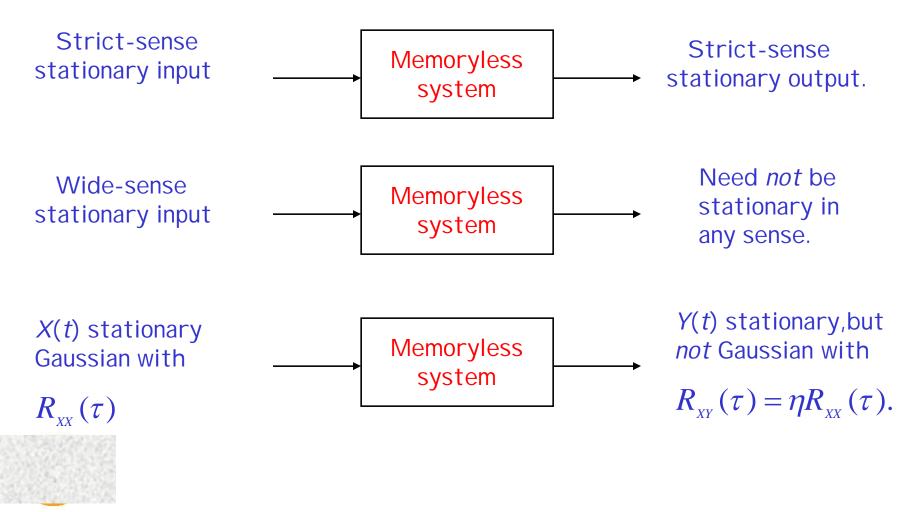


Our goal is to study the output process statistics in terms of the input process statistics and the system function.



Memoryless Systems

The output Y(t) in this case depends only on the present value of the input X(t). i.e., $Y(t) = g\{X(t)\}$.



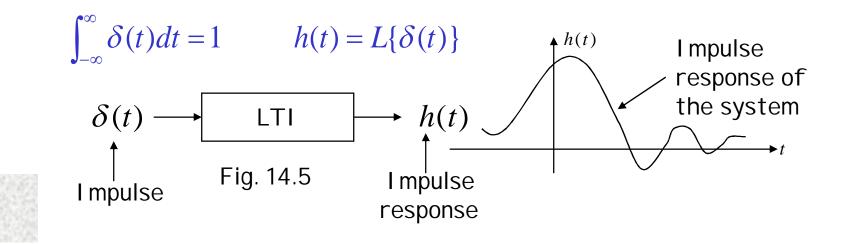
Linear Time-Invariant Systems

Time-Invariant System

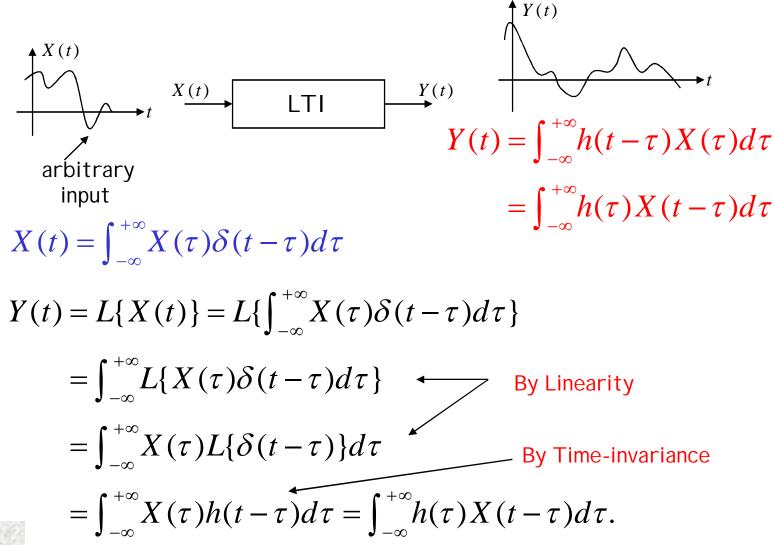
Shift in the input results in the same shift in the output.

 $Y(t) = L\{X(t)\} \Longrightarrow L\{X(t-t_0)\} = Y(t-t_0)$

Linear Time-Invariant System A linear system with time-invariant property.



Linear Filtering of a Random Signal



Theorem 6.1

$$E[Y(t)] = E\left[\int_{-\infty}^{\infty} h(\tau)X(t-\tau)d\tau\right] = \int_{-\infty}^{\infty} h(\tau)E[X(t-\tau)]d\tau$$

$$= E[X(t)] * h(t)$$

If the input to an LTI filter with impulse response h(t) is a wide sense stationary process X(t), the output Y(t) has the following properties:

(a) Y(t) is a WSS process with expected value

autocorrelation function $\mu_Y = E[Y(t)] = \mu_X \int_{-\infty}^{\infty} h(\tau) d\tau$

(b) X(t) and Y(t) are jointly WSS and have L/O cross- correlation by $R_Y(\tau) = \begin{bmatrix} h(u) & h(v) \\ h(v) & h(v) \end{bmatrix} = \begin{bmatrix} h(v) & h(v) \\ h(v) & h(v) \end{bmatrix} = \begin{bmatrix} h(v) & h(v) \\ h(v) & h(v) \end{bmatrix} = \begin{bmatrix} h(v) & h(v) \\ h(v) & h(v) \end{bmatrix} = \begin{bmatrix} h(v) & h(v) \\ h(v) & h(v) \end{bmatrix} = \begin{bmatrix} h(v) & h(v) \\ h(v) & h(v) \end{bmatrix} = \begin{bmatrix} h(v) & h(v) \\ h(v) & h(v) \\ h(v) & h(v) \end{bmatrix} = \begin{bmatrix} h(v) & h(v) \\ h(v) & h(v) \\ h(v) & h(v) \end{bmatrix} = \begin{bmatrix} h(v) & h(v) \\ h(v) & h(v) \\ h(v) & h(v) \\ h(v) & h(v) \end{bmatrix} = \begin{bmatrix} h(v) & h(v) \\ h(v) &$

(c) The output autocorrelation is related to the I/O cross-correlation by

$$R_{XY}(\tau) = \int_{-\infty}^{\infty} h(u) R_X(\tau - u) du = R_X(\tau) * h(\tau)$$

$$R_{Y}(\tau) = \int_{-\infty}^{\infty} h(-w) R_{XY}(\tau - w) dw$$
$$= R_{XY}(\tau) * h(-\tau)$$

X(t), a WSS stochastic process with expected value $\mu_X = 10$ volts, is the input to an LTI filter with

$$h(t) = \begin{cases} e^{5t} & 0 \le t \le 0.1 \text{ sec,} \\ 0 & \text{otherwise.} \end{cases}$$

What is the expected value of the filter output process Y(t)? Sol : Ans: $2(e^{0.5}-1)$ V

A white Gaussian noise process X(t) with autocorrelation function $R_W(\tau) = \eta_0 \delta(\tau)$ is passed through the movingaverage filter

$$h(t) = \begin{cases} 1/T & 0 \le t \le T, \\ 0 & \text{otherwise.} \end{cases}$$

For the output Y(t), find the expected value E[Y(t)], the I/O cross-correlation $R_{WY}(\tau)$ and the autocorrelation $R_Y(\tau)$. Sol :

$$Ans: R_{WY}(\tau) = \begin{cases} \eta_0 / T & 0 \le \tau \le T, \\ 0 & \text{otherwise.} \end{cases} \quad R_Y(\tau) = \begin{cases} \eta_0 (T - |\tau|) / T^2 & |\tau| \le T, \\ 0 & \text{otherwise.} \end{cases}$$

If a stationary Gaussian process X(t) is the input to an LTI Filter h(t), the output Y(t) is a stationary Gaussian process with expected value and autocorrelation given by Theorem 6.2.

For the white noise moving-average process Y(t) in Example 6.2, let $\eta_0 = 10^{-15} W/Hz$ and $T = 10^{-3} s$. For an arbitrary time t_0 , find $P[Y(t_0) > 4 \times 10^{-6}]$. Sol : Ans: $Q(4) = 3.17 \times 10^{-5}$

The random sequence X_n is obtained by sampling the continuous-time process X(t) at a rate of $1/T_s$ samples per second. If X(t) is a WSS process with expected value $E[X(t)] = \mu_X$ and autocorrelation $R_X(\tau)$, then X_n is a WSS random sequence with expected value $E[X_n] = \mu_X$ and autocorrelation $R_X[k] = R_X(kT_s)$.

Continuing Example 6.3, the random sequence Y_n is obtained by sampling the white noise moving-average process Y(t) at a rate of $f_s = 10^4$ samples per second. Derive the autocorrelation function $R_Y[n]$ of Y_n . Sol: $(10^{-6}(1 - 0.1|n|) - |n| \le 10$

Ans:
$$R_{Y}[n] = \begin{cases} 10^{\circ}(1-0.1|n|) & |n| \le 10, \\ 0 & \text{otherwise.} \end{cases}$$

If the input to a discrete-time LTI filter with impulse response h_n is a WSS random sequence, X_n , the output Y_n has the following properties.

(a) Y_n is a WSS random sequence with expected value

and autocorrelation function $\mu_Y = E[Y_n] = \mu_X \sum_{n=1}^{\infty} h_n.$

(b) Y_n and X_n are jointly WSS with I/O cross-correlation

 $R_{Y}[n] = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} h_{i}h_{j}R_{X}[n+i-j].$

R

(c) The output autocorrelation is related to the I/O crosscorrelation by

$$\sum_{XY}[n] = \sum_{i=-\infty}^{\infty} h_i R_X[n-i].$$
$$R_Y[n] = \sum_{i=-\infty}^{\infty} h_{-i} R_{XY}[n-i]$$

A WSS random sequence, X_n , with $\mu_X = 1$ and autocorrelation function $R_X[n]$ is the input to the order *M*-1 discrete-time moving-average filter h_n where

$$h_n = \begin{cases} 1/M & n = 0, 1, \dots, M - 1, \\ 0 & \text{otherwise,} \end{cases} \text{ and } R_X[n] = \begin{cases} 4 & n = 0, \\ 2 & n = \pm 1, \\ 0 & |n| \ge 2. \end{cases}$$

For the case M = 2, find the following properties of the output random sequence Y_n : the expected value μ_{Y_i} the autocorrelation $R_Y[n]$, and the variance $Var[Y_n]$. Sol :

Ans:
$$R_{Y}[n] = \begin{cases} 3 & n = 0, \\ 2 & |n| = 1, \\ 1/2 & |n| = 2, \\ 0 & \text{otherwise.} \end{cases}$$

A WSS random sequence, X_n , with $\mu_X = 0$ and autocorrelation function $R_X[n] = \sigma^2 \delta_n$ is passed through the order *M*–1 discrete-time moving-average filter h_n where

$$h_n = \begin{cases} 1/M & n = 0, 1, \cdots, M - 1, \\ 0 & \text{otherwise.} \end{cases}$$

Find the output autocorrelation $R_{\gamma}[n]$. Sol :

Ans:
$$R_{Y}[n] = \begin{cases} \sigma^{2}(M - |n|) / M^{2} & |n| \leq (M - 1), \\ 0 & \text{otherwise.} \end{cases}$$

A first-order discrete-time integrator with WSS input sequence X_n has output $Y_n = X_n + 0.8 Y_{n-1}$. What is the impulse response h_n ? Sol :

Ans:
$$R_{Y}[n] = \begin{cases} 0.8^{n} & n = 0, 1, 2, \cdots \\ 0 & \text{otherwise.} \end{cases}$$

Continuing Example 6.7, suppose the WSS input X_n with expected value $\mu_X = 0$ and autocorrelation function

$$R_{X}[n] = \begin{cases} 1 & n = 0, \\ 0.5 & |n| = 1, \\ 0 & |n| \ge 2. \end{cases}$$

is the input to the first-order integrator h_n . Find the second moment, $E[Y_n^2]$, of the output.

If X_n is a WSS process with expected value μ and autocorrelation function $R_X[k]$, then the vector has correlation matrix and expected value given by X_n $R_{\bar{X}_n}$ $E[X_n]$ $\vec{R}_{\bar{X}_n} = \begin{bmatrix} R_X[0] & R_X[1] & \cdots & R_X[M-1] \\ R_X[1] & R_X[0] & \cdots & \vdots \\ \vdots & \vdots & \ddots & R_X[1] \\ R_X[M-1] & \cdots & R_X[1] & R_X[0] \end{bmatrix}, E[\bar{X}_n] = \mu \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}.$

where $\vec{X}_n = [X_{n-M+1} \ X_{n-M+2} \ \cdots \ X_n]^T$ is the *M* - dimensional vector. $\vec{R}_{\vec{X}_n} = E[\vec{X}_n \vec{X}_n^T]$

The WSS sequence X_n has autocorrelation function $R_X[n]$ as given in Example 6.5. Find the correlation matrix of

Sol:

$$\vec{X}_{33} = \begin{bmatrix} X_{30} & X_{31} & X_{32} & X_{33} \end{bmatrix}$$
.
 $R_X[n] = \begin{cases} 4 & n = 0, \\ 2 & n = \pm 1, \\ 0 & |n| \ge 2. \end{cases}$

The order M-1 averaging filter h_n given in Example 6.6 can be represented by the M element vector