Mean, Variance, Moments and Characteristic Functions

For a r.v X, its p.d.f $f_{X}(x)$ represents complete information about it, and for any Borel set B on the x-axis

$$
\begin{equation*}
P(X(\xi) \in B)=\int_{B} f_{X}(x) d x . \tag{6-1}
\end{equation*}
$$

Note that $f_{X}(x)$ represents very detailed information, and quite often it is desirable to characterize the r.v in terms of its average behavior. In this context, we will introduce two parameters - mean and variance - that are universally used to represent the overall properties of the r.v and its p.d.f.

Mean or the Expected Value of a r.v X is defined as

$$
\begin{equation*}
\eta_{X}=\bar{X}=E(X)=\int_{-\infty}^{+\infty} x f_{X}(x) d x \tag{6-2}
\end{equation*}
$$

If X is a discrete-type r.v, then using (3-25) we get

$$
\begin{align*}
\eta_{X} & =\bar{X}=E(X)=\int x \sum_{i} p_{i} \delta\left(x-x_{i}\right) d x=\sum_{i} x_{i} p_{i} \underbrace{\int \delta\left(x-x_{i}\right) d x}_{1} \\
& =\sum_{i} x_{i} p_{i}=\sum_{i} x_{i} P\left(X=x_{i}\right) . \tag{6-3}
\end{align*}
$$

Mean represents the average (mean) value of the r.v in a very large number of trials. For example if $X \sim U(a, b)$, then using (3-31),

$$
\begin{equation*}
E(X)=\int_{a}^{b} \frac{x}{b-a} d x=\left.\frac{1}{b-a} \frac{x^{2}}{2}\right|_{a} ^{b}=\frac{b^{2}-a^{2}}{2(b-a)}=\frac{a+b}{2} \tag{6-4}
\end{equation*}
$$

is the midpoint of the interval (a, b).

On the other hand if X is exponential with parameter λ as in (3-32), then

$$
\begin{equation*}
E(X)=\int_{0}^{\infty} \frac{x}{\lambda} e^{-x / \lambda} d x=\lambda \int_{0}^{\infty} y e^{-y} d y=\lambda, \tag{6-5}
\end{equation*}
$$

implying that the parameter λ in (3-32) represents the mean value of the exponential r.v.

Similarly if X is Poisson with parameter λ as in (3-45), using (6-3), we get

$$
\begin{align*}
E(X) & =\sum_{k=0}^{\infty} k P(X=k)=\sum_{k=0}^{\infty} k e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-\lambda} \sum_{k=1}^{\infty} k \frac{\lambda^{k}}{k!} \\
& =e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!}=\lambda e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!}=\lambda e^{-\lambda} e^{\lambda}=\lambda . \tag{6-6}
\end{align*}
$$

Thus the parameter λ in (3-45) also represents the mean of the Poisson r.v.

In a similar manner, if X is binomial as in (3-44), then its mean is given by

$$
\begin{align*}
E(X) & =\sum_{k=0}^{n} k P(X=k)=\sum_{k=0}^{n} k\binom{n}{k} p^{k} q^{n-k}=\sum_{k=1}^{n} k \frac{n!}{(n-k)!k!} p^{k} q^{n-k} \\
& =\sum_{k=1}^{n} \frac{n!}{(n-k)!(k-1)!} p^{k} q^{n-k}=n p \sum_{i=0}^{n-1} \frac{(n-1)!}{(n-i-1)!i!} p^{i} q^{n-i-1}=n p(p+q)^{n-1}=n p . \tag{6-7}
\end{align*}
$$

Thus $n p$ represents the mean of the binomial r.v in (3-44).
For the normal r.v in (3-29),

$$
\begin{align*}
E(X) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{+\infty} x e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{+\infty}(y+\mu) e^{-y^{2} / 2 \sigma^{2}} d y \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \underbrace{\int_{-\infty}^{+\infty} y e^{-y^{2} / 2 \sigma^{2}} d y}_{0}+\mu \cdot \underbrace{\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{+\infty} e^{-y^{2} / 2 \sigma^{2}} d y=\mu .}_{0} . \tag{6-8}
\end{align*}
$$

Thus the first parameter in $X \sim N\left(\mu, \sigma^{2}\right)$ is infact the mean of the Gaussian r.v X. Given $X \sim f_{X}(x)$, suppose $Y=g(X)$ defines a new r.v with p.d.f $f_{Y}(y)$. Then from the previous discussion, the new r.v Y has a mean μ_{r} given by (see (6-2))

$$
\begin{equation*}
\mu_{Y}=E(Y)=\int_{-\infty}^{+\infty} y f_{Y}(y) d y . \tag{6-9}
\end{equation*}
$$

From (6-9), it appears that to determine $E(Y)$, we need to determine $f_{Y}(y)$. However this is not the case if only $E(Y)$ is the quantity of interest. Recall that for any $y, \Delta y>0$

$$
\begin{equation*}
P(y<Y \leq y+\Delta y)=\sum_{i} P\left(x_{i}<X \leq x_{i}+\Delta x_{i}\right), \tag{6-10}
\end{equation*}
$$

where x_{i} represent the multiple solutions of the equation $y=g\left(x_{i}\right)$. $\operatorname{But}(6-10)$ can be rewritten as

$$
\begin{equation*}
f_{Y}(y) \Delta y=\sum_{i} f_{X}\left(x_{i}\right) \Delta x_{i}, \tag{6-11}
\end{equation*}
$$

where the $\left(x_{i}, x_{i}+\Delta x_{i}\right)$ terms form nonoverlapping intervals. Hence

$$
\begin{equation*}
y f_{Y}(y) \Delta y=\sum_{i} y f_{X}\left(x_{i}\right) \Delta x_{i}=\sum_{i} g\left(x_{i}\right) f_{X}\left(x_{i}\right) \Delta x_{i}, \tag{6-12}
\end{equation*}
$$

and hence as Δy covers the entire y-axis, the corresponding Δx 's are nonoverlapping, and they cover the entire x-axis. Hence, in the limit as $\Delta y \rightarrow 0$, integrating both sides of (612), we get the useful formula

$$
\begin{equation*}
E(Y)=E(g(X))=\int_{-\infty}^{+\infty} y f_{Y}(y) d y=\int_{-\infty}^{+\infty} g(x) f_{X}(x) d x . \tag{6-13}
\end{equation*}
$$

In the discrete case, (6-13) reduces to

$$
\begin{equation*}
E(Y)=\sum_{i} g\left(x_{i}\right) P\left(X=x_{i}\right) \tag{6-14}
\end{equation*}
$$

From (6-13)-(6-14), $f_{Y}(y)$ is not required to evaluate $E(Y)$ for $Y=g(X)$. We can use (6-14) to determine the mean of $Y=X^{2}$, where X is a Poisson r.v. Using (3-45)

$$
\begin{align*}
E\left(X^{2}\right) & =\sum_{k=0}^{\infty} k^{2} P(X=k)=\sum_{k=0}^{\infty} k^{2} e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-\lambda} \sum_{k=1}^{\infty} k^{2} \frac{\lambda^{k}}{k!} \\
& =e^{-\lambda} \sum_{k=1}^{\infty} k \frac{\lambda^{k}}{(k-1)!}=e^{-\lambda} \sum_{i=0}^{\infty}(i+1) \frac{\lambda^{i+1}}{i!} \\
& =\lambda e^{-\lambda}\left(\sum_{i=0}^{\infty} i \frac{\lambda^{i}}{i!}+\sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!}\right)=\lambda e^{-\lambda}\left(\sum_{i=1}^{\infty} i \frac{\lambda^{i}}{i!}+e^{\lambda}\right) \\
& =\lambda e^{-\lambda}\left(\sum_{i=1}^{\infty} \frac{\lambda^{i}}{(i-1)!}+e^{\lambda}\right)=\lambda e^{-\lambda}\left(\sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!}+e^{\lambda}\right) \\
& =\lambda e^{-\lambda}\left(\lambda e^{\lambda}+e^{\lambda}\right)=\lambda^{2}+\lambda . \tag{6-15}
\end{align*}
$$

In general, $E\left(X^{k}\right)$ is known as the k th moment of r.v X. Thus if $\sim X \quad \dot{f}(s) s e c o n d$ moment is given by (6-15).

Mean alone will not be able to truly represent the p.d.f of any r.v. To illustrate this, consider the following scenario: Consider two Gaussian r.vs $X_{1} \sim N(0,1)$ and $X_{2} \sim N(0,10)$. Both of them have the same mean $\mu=0$. However, as Fig. 6.1 shows, their p.d.fs are quite different. One is more concentrated around the mean, whereas the other one (X_{2}) has a wider spread. Clearly, we need atleast an additional parameter to measure this spread around the mean!

(a) $\sigma^{2}=1$

(b) $\sigma^{2}=10$

Fig.6.1

For a r.v X with mean $\mu, X-\mu$ represents the deviation of the r.v from its mean. Since this deviation can be either positive or negative, consider the quantity $(x-\mu)^{2}$, and its average value $E\left[(X-\mu)^{2}\right]$ represents the average mean square deviation of X around its mean. Define

$$
\begin{equation*}
\sigma_{x}^{2} \stackrel{\Delta}{=} E\left[(X-\mu)^{2}\right]>0 \tag{6-16}
\end{equation*}
$$

With $g(X)=(X-\mu)^{2}$ and using (6-13) we get

$$
\begin{equation*}
\sigma_{x}^{2}=\int_{-\infty}^{+\infty}(x-\mu)^{2} f_{X}(x) d x>0 . \tag{6-17}
\end{equation*}
$$

σ_{x}^{2} is known as the variance of the r.v X, and its square root $\sigma_{X}=\sqrt{E(X-\mu)^{2}}$ is known as the standard deviation of X. Note that the standard deviation represents the root mean square spread of the r.v X around its mean μ.

Expanding (6-17) and using the linearity of the integrals, we get

$$
\begin{align*}
\operatorname{Var}(X) & =\sigma_{X}^{2}=\int_{-\infty}^{+\infty}\left(x^{2}-2 x \mu+\mu^{2}\right) f_{X}(x) d x \\
& =\int_{-\infty}^{+\infty} x^{2} f_{X}(x) d x-2 \mu \int_{-\infty}^{+\infty} x f_{X}(x) d x+\mu^{2} \\
& =E\left(X^{2}\right)-\mu^{2}=E\left(X^{2}\right)-[E(X)]^{2}=\bar{X}^{2}-\bar{X}^{2} . \tag{6-18}
\end{align*}
$$

Alternatively, we can use (6-18) to compute σ_{x}^{2}.
Thus, for example, returning back to the Poisson r.v in (345), using (6-6) and (6-15), we get

$$
\begin{equation*}
\sigma_{x}^{2}=\bar{X}^{2}-\bar{X}^{2}=\left(\lambda^{2}+\lambda\right)-\lambda^{2}=\lambda \tag{6-19}
\end{equation*}
$$

Thus for a Poisson r.v, mean and variance are both equal to its parameter λ.

To determine the variance of the normal r.v $N\left(\mu, \sigma^{2}\right)$, we can use (6-16). Thus from (3-29)

$$
\begin{equation*}
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=\int_{-\infty}^{+\infty}(x-\mu)^{2} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x . \tag{6-20}
\end{equation*}
$$

To simplify (6-20), we can make use of the identity

$$
\int_{-\infty}^{+\infty} f_{X}(x) d x=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x=1
$$

for a normal p.d.f. This gives

$$
\begin{equation*}
\int_{-\infty}^{+\infty} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x=\sqrt{2 \pi} \sigma \tag{6-21}
\end{equation*}
$$

Differentiating both sides of (6-21) with respect to σ, we get

$$
\int_{-\infty}^{+\infty} \frac{(x-\mu)^{2}}{\sigma^{3}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x=\sqrt{2 \pi}
$$

Or

$$
\begin{equation*}
\int_{-\infty}^{+\infty}(x-\mu)^{2} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x=\sigma^{2} \tag{6-22}
\end{equation*}
$$

which represents the $\operatorname{Var}(X)$ in (6-20). Thus for a normal r.v as in (3-29)

$$
\begin{equation*}
\operatorname{Var}(X)=\sigma^{2} \tag{6-23}
\end{equation*}
$$

and the second parameter in $N\left(\mu, \sigma^{2}\right)$ infact represents the variance of the Gaussian r.v. As Fig. 6.1 shows the larger the the larger the spread of the p.d.f around its mean. Thus as the variance of a r.v tends to zero, it will begin to concentrate more and more around the mean ultimately behaving like a constant.

Moments: As remarked earlier, in general

$$
\begin{equation*}
m_{n}=\bar{X}^{n}=E\left(X^{n}\right), \quad n \geq 1 \tag{6-24}
\end{equation*}
$$

are known as the moments of the r.v X, and

$$
\begin{equation*}
\mu_{n}=E\left[(X-\mu)^{n}\right] \tag{6-25}
\end{equation*}
$$

are known as the central moments of X. Clearly, the mean $\mu=m_{1}$, and the variance $\sigma^{2}=\mu_{2}$. It is easy to relate m_{n} and μ_{n}. Infact

$$
\begin{align*}
\mu_{n} & =E\left[(X-\mu)^{n}\right]=E\left(\sum_{k=0}^{n}\binom{n}{k} X^{k}(-\mu)^{n-k}\right) \\
& =\sum_{k=0}^{n}\binom{n}{k} E\left(X^{k}\right)(-\mu)^{n-k}=\sum_{k=0}^{n}\binom{n}{k} m_{k}(-\mu)^{n-k} . \tag{6-26}
\end{align*}
$$

In general, the quantities

$$
\begin{equation*}
E\left[(X-a)^{n}\right] \tag{6-27}
\end{equation*}
$$

are known as the generalized moments of X about a, and

$$
\begin{equation*}
E\left[|X|^{n}\right] \tag{6-28}
\end{equation*}
$$

are known as the absolute moments of X.

For example, if $X \sim N\left(0, \sigma^{2}\right)$, then it can be shown that

$$
\begin{align*}
& E\left(X^{n}\right)=\left\{\begin{array}{cc}
0, & n \text { odd, } \\
1 \cdot 3 \cdots(n-1) \sigma^{n}, & n \text { even. }
\end{array}\right. \tag{6-29}\\
& E\left(|X|^{n}\right)=\left\{\begin{array}{cc}
1 \cdot 3 \cdots(n-1) \sigma^{n}, & n \text { even, } \\
2^{k} k!\sigma^{2 k+1} \sqrt{2 / \pi}, & n=(2 k+1), \text { odd. }
\end{array}\right. \tag{6-30}
\end{align*}
$$

Direct use of (6-2), (6-13) or (6-14) is often a tedious procedure to compute the mean and variance, and in this context, the notion of the characteristic function can be quite helpful.

Characteristic Function

The characteristic function of a r.v X is defined as

$$
\begin{equation*}
\Phi_{X}(\omega) \triangleq E\left(e^{j X \omega}\right)=\int_{-\infty}^{+\infty} e^{j x \omega} f_{X}(x) d x . \tag{6-31}
\end{equation*}
$$

Thus $\Phi_{X}(0)=1$, and $\left|\Phi_{X}(\omega)\right| \leq 1$ for all ω.
For discrete r.vs the characteristic function reduces to

$$
\begin{equation*}
\Phi_{X}(\omega)=\sum_{k} e^{j k \omega} P(X=k) \tag{6-32}
\end{equation*}
$$

Thus for example, if $\quad X \sim P(\lambda)$ as in (3-45), then its characteristic function is given by

$$
\begin{equation*}
\Phi_{X}(\omega)=\sum_{k=0}^{\infty} e^{j k \omega} e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\left(\lambda e^{j \omega}\right)^{k}}{k!}=e^{-\lambda} e^{\lambda e^{j \omega}}=e^{\lambda\left(e^{j \omega}-1\right)} \tag{6-33}
\end{equation*}
$$

Similarly, if X is a binomial r.v as in (3-44), its characteristic function is given by

$$
\begin{equation*}
\Phi_{X}(\omega)=\sum_{k=0}^{n} e^{j k \omega}\binom{n}{k} p^{k} q^{n-k}=\sum_{k=0}^{n}\binom{n}{k}\left(p e^{j \omega}\right)^{k} q^{n-k}=\left(p e^{j \omega}+q\right)^{n} \tag{6-34}
\end{equation*}
$$

To illustrate the usefulness of the characteristic function of a r.v in computing its moments, first it is necessary to derive the relationship between them. Towards this, from (6-31)

$$
\begin{align*}
\Phi_{X}(\omega) & =E\left(e^{j X \omega}\right)=E\left[\sum_{k=0}^{\infty} \frac{(j \omega X)^{k}}{k!}\right]=\sum_{k=0}^{\infty} j^{k} \frac{E\left(X^{k}\right)}{k!} \omega^{k} \\
& =1+j E(X) \omega+j^{2} \frac{E\left(X^{2}\right)}{2!} \omega^{2}+\cdots+j^{k} \frac{E\left(X^{k}\right)}{k!} \omega^{k}+\cdots \tag{6-35}
\end{align*}
$$

Taking the first derivative of (6-35) with respect to ω, and letting it to be equal to zero, we get

$$
\begin{equation*}
\left.\frac{\partial \Phi_{X}(\omega)}{\partial \omega}\right|_{\omega=0}=j E(X) \quad \text { or } \quad E(X)=\left.\frac{1}{j} \frac{\partial \Phi_{X}(\omega)}{\partial \omega}\right|_{\omega=0} \tag{6-36}
\end{equation*}
$$

Similarly, the second derivative of (6-35) gives

$$
\begin{equation*}
E\left(X^{2}\right)=\left.\frac{1}{j^{2}} \frac{\partial^{2} \Phi_{X}(\omega)}{\partial \omega^{2}}\right|_{\omega=0} \tag{6-37}
\end{equation*}
$$

and repeating this procedure k times, we obtain the k th moment of X to be

$$
\begin{equation*}
E\left(X^{k}\right)=\left.\frac{1}{j^{k}} \frac{\partial^{k} \Phi_{X}(\omega)}{\partial \omega^{k}}\right|_{\omega=0}, \quad k \geq 1 . \tag{6-38}
\end{equation*}
$$

We can use (6-36)-(6-38) to compute the mean, variance and other higher order moments of any r.v X. For example, if $X \sim P(\lambda)$, then from (6-33)

$$
\begin{equation*}
\frac{\partial \Phi_{X}(\omega)}{\partial \omega}=e^{-\lambda} e^{\lambda e^{j \omega}} \lambda j e^{j \omega} \tag{6-39}
\end{equation*}
$$

so that from (6-36)

$$
\begin{equation*}
E(X)=\lambda, \tag{6-40}
\end{equation*}
$$

which agrees with (6-6). Differentiating (6-39) one more time, we get

$$
\begin{equation*}
\frac{\partial^{2} \Phi_{X}(\omega)}{\partial \omega^{2}}=e^{-\lambda}\left(e^{\lambda e^{j \omega}}\left(\lambda j e^{j \omega}\right)^{2}+e^{\lambda e^{j \omega}} \lambda j^{2} e^{j \omega}\right) \tag{6-41}
\end{equation*}
$$

so that from (6-37)

$$
\begin{equation*}
E\left(X^{2}\right)=\lambda^{2}+\lambda \tag{6-42}
\end{equation*}
$$

which again agrees with (6-15). Notice that compared to the tedious calculations in (6-6) and (6-15), the efforts involved in (6-39) and (6-41) are very minimal.

We can use the characteristic function of the binomial r.v $B(n, p)$ in (6-34) to obtain its variance. Direct differentiation of (6-34) gives

$$
\begin{equation*}
\frac{\partial \Phi_{X}(\omega)}{\partial \omega}=j n p e^{j \omega}\left(p e^{j \omega}+q\right)^{n-1} \tag{6-43}
\end{equation*}
$$

so that from (6-36), $E(X)=n p$ as in (6-7).

One more differentiation of (6-43) yields

$$
\begin{equation*}
\frac{\partial^{2} \Phi_{X}(\omega)}{\partial \omega^{2}}=j^{2} n p\left(e^{j \omega}\left(p e^{j \omega}+q\right)^{n-1}+(n-1) p e^{j 2 \omega}\left(p e^{j \omega}+q\right)^{n-2}\right) \tag{6-44}
\end{equation*}
$$

and using (6-37), we obtain the second moment of the binomial r.v to be

$$
\begin{equation*}
E\left(X^{2}\right)=n p(1+(n-1) p)=n^{2} p^{2}+n p q \tag{6-45}
\end{equation*}
$$

Together with (6-7), (6-18) and (6-45), we obtain the variance of the binomial r.v to be

$$
\begin{equation*}
\sigma_{X}^{2}=E\left(X^{2}\right)-[E(X)]^{2}=n^{2} p^{2}+n p q-n^{2} p^{2}=n p q \tag{6-46}
\end{equation*}
$$

To obtain the characteristic function of the Gaussian r.v, we can make use of (6-31). Thus if $X \sim N\left(\mu, \sigma^{2}\right)$, then

$$
\begin{align*}
\Phi_{X}(\omega)= & \int_{-\infty}^{+\infty} e^{j \omega x} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x \quad(\text { Let } x-\mu=y) \\
= & e^{j \mu \omega} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{+\infty} e^{j \omega y} e^{-y^{2} / 2 \sigma^{2}} d y=e^{j \mu \omega} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{+\infty} e^{-y / 2 \sigma^{2}\left(y-j 2 \sigma^{2} \omega\right)} d y \\
& \left(\text { Let } y-j \sigma^{2} \omega=u \text { so that } y=u+j \sigma^{2} \omega\right) \\
= & e^{j \mu \omega} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{+\infty} e^{-\left(u+j \sigma^{2} \omega\right)\left(u-j \sigma^{2} \omega\right) / 2 \sigma^{2}} d u \\
= & e^{j \mu \omega} e^{-\sigma^{2} \omega^{2} / 2} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{+\infty} e^{-u^{2} / 2 \sigma^{2}} d u=e^{\left(j \mu \omega-\sigma^{2} \omega^{2} / 2\right)} . \tag{6-47}
\end{align*}
$$

Notice that the characteristic function of a Gaussian r.v itself has the "Gaussian" bell shape. Thus if $X \sim N\left(0, \sigma^{2}\right)$, then

$$
\begin{equation*}
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-x^{2} / 2 \sigma^{2}} \tag{6-48}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{X}(\omega)=e^{-\sigma^{2} \omega^{2} / 2} \tag{6-49}
\end{equation*}
$$

Fig. 6.2
From Fig. 6.2, the reverse roles of σ^{2} in $f_{X}(x)$ and $\Phi_{X}(\omega)$ are noteworthy (σ^{2} vs $\frac{1}{\sigma^{2}}$).
In some cases, mean and variance may not exist. For example, consider the Cauchy r.v defined in (3-39). With

$$
\begin{align*}
& f_{X}(x)=\frac{(\alpha / \pi)}{\alpha^{2}+x^{2}}, \\
& \qquad E\left(X^{2}\right)=\frac{\alpha}{\pi} \int_{-\infty}^{+\infty} \frac{x^{2}}{\alpha^{2}+x^{2}} d x=\frac{\alpha}{\pi} \int_{-\infty}^{+\infty}\left(1-\frac{\alpha^{2}}{\alpha^{2}+x^{2}}\right) d x=\infty, \tag{6-50}
\end{align*}
$$

clearly diverges to infinity. Similarly

$$
\begin{equation*}
E(X)=\frac{\alpha}{\pi} \int_{-\infty}^{+\infty} \frac{x}{\alpha^{2}+x^{2}} d x \tag{6-51}
\end{equation*}
$$

To compute (6-51), let us examine its one sided factor

$$
\begin{aligned}
& \int_{0}^{+\infty} \frac{x}{\alpha^{2}+x^{2}} d x \text {. With } x=\alpha \tan \theta \\
& \begin{aligned}
\int_{0}^{+\infty} \frac{x}{\alpha^{2}+x^{2}} d x & =\int_{0}^{\pi / 2} \frac{\alpha \tan \theta}{\alpha^{2} \sec ^{2} \theta} \alpha \sec ^{2} \theta d \theta=\int_{0}^{\pi / 2} \frac{\sin \theta}{\cos \theta} d \theta \\
& =-\int_{0}^{\pi / 2} \frac{d(\cos \theta)}{\cos \theta}=-\left.\log \cos \theta\right|_{0} ^{\pi / 2}=-\log \cos \frac{\pi}{2}=\infty,
\end{aligned}
\end{aligned}
$$

indicating that the double sided integral in $(6-51)$ does not converge and is undefined. From (6-50)-(6-52), the mean and variance of a Cauchy r.v are undefined.

We conclude this section with a bound that estimates the dispersion of the r.v beyond a certain interval centered around its mean. Since σ^{2} measures the dispersion of

