Mean, Variance, Moments and
Characteristic Functions

Forar.v X, its p.d.f () represents complete information
about it, and for any Borel set B on the x-axis

P(X (&) e B)= [ fy(x)dx. (6-1)

Note that fi(x) represents very detailed information, and
quite often it is desirable to characterize the r.v in terms of
Its average behavior. In this context, we will introduce two
parameters - mean and variance - that are universally used
to represent the overall properties of the r.v and its p.d.f.



Mean or the Expected Value of ar.v X is defined as

ny = X =E(X) =[x f,(x)dx. (6-2)
If X Is a discrete-type r.v, then using (3-25) we get
ny, = X = E(X) :sz PS5 (X — X, )dX :inpij5(x—xi)dx

1
= Xp =) % P(X =x). (6-3)
Mean rep'resents the average (mean) value of ther.vina
very large number of trials. For example if X~U(a,b), then
using (3-31),
X 1 X b?-a’ a+b (6-2)

b
E(X)= dx = = —
(X) LIb—a b-a 2| 2(b-a) 2

IS the midpoint of the interval (a,b).
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On the other hand if X Is exponential with parameter 1 as In
(3-32), then

E(X)= J‘:%e‘mdx = AI: ye 'dy = 4, (6-5)

Implying that the parameter 1 in (3-32) represents the mean
value of the exponential r.v.

Similarly if X is Poisson with parameter 2 as in (3-45),
using (6-3), we get
E(X)=Zoo:kP(X :k):ike ﬂﬂ ﬂf ki—k'
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Thus the parameter A in (3-45) also represents the mean of
the Poisson r.v.




In a similar manner, if X i1s binomial as in (3-44), then its
mean Is given by

E(X)_ka(x =k)= Z (Ejpkan:ik(n —mk!)lk||0kq”k

k=0 k=1

n n! (n ]_)I | - L
:kzl(n—k)!(k—l)l - pz(n_,_l).,. g =np(p+qg)" =np.

(6-7)
Thus np represents the mean of the binomial r.v in (3-44).

For the normal r.v in (3-29),
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Thus the first parameter in X ~N(u,c?) 1S infact the mean of
the Gaussian r.v X. Given X~ f, (x),suppose Y = g(X) defines a
new r.v with p.d.f f,(y). Then from the previous discussion,
the new r.v Y has a mean w, given by (see (6-2))

ue=EN) =] "y f,(y)dy. (6-9)

From (6-9), It appears that to determine E(Y), we need to
determine f,(y). However this is not the case if only g(v) Is
the quantity of interest. Recall that for any y, ay>o0

P(y<Y <y+Ay)=> P(x < X <x +AX), (6-10)

where x represent the multiple solutions of the equation
y =9(x). But(6-10) can be rewritten as

f, (y)Ay = Z fo (X )AX, (6-11)



where the (x, x, +ax,) terms form nonoverlapping intervals.
Hence

y fY (y)Ay — Z y fx (Xi)AXi = Z g(xi) fx (Xi)AXi’ (6-12)
and hence as Ay covers the entire y-axis, the corresponding
AX’s are nonoverlapping, and they cover the entire x-axis.

Hence, in the limit as Ay — 0, integrating both sides of (6-
12), we get the useful formula

E(Y)=E(g(X)=] "y f,(0dy =[ "g(x) f, ()dx. (613
In the discrete case, (6-13) reduces to
E(Y) =2 g(x)P(X =x). (6-14)

From (6-13)-(6-14), fY(;/) IS not required to evaluate E(Y)
for v = g(x). We can use (6-14) to determine the mean of

Y = X?, where X Is a Poisson r.v. Using (3-45)
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= le™? +et = e Z + e’
i=1 (I _1)| m=0 m
= 2e*(ret + e )= 22+ A, (6-15)

In general, E(x*) is known as the kth moment of r.v X. Thus
If ~ X Hs13econd moment is given by (6-15).



Mean alone will not be able to truly represent the p.d.f of
any r.v. To illustrate this, consider the following scenario:
Consider two Gaussianr.vs X,~N(0,1) and X,~ N(0,10).
Both of them have the same mean x=0. HoweVver, as
Fig. 6.1 shows, their p.d.fs are quite different. One Is more
concentrated around the mean, whereas the other one (X,)
has a wider spread. Clearly, we need atleast an additional
parameter to measure this spread around the mean!
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Forarv X with mean x, X - u represents the deviation of
the r.v from its mean. Since this deviation can be either
positive or negative, consider the quantity (x - «)?, and Its
average value e[(x - x)?] represents the average mean
square deviation of X around its mean. Define

o? =E[(X —u)*1>0. (6-16)

With g(X)=(X - x)* and using (6-13) we get
o, = jj:(x —u)* f, (x)dx > 0. (6-17)

o, is known as the variance of the r.v X, and its square
root o, =+E(X - u)*> is known as the standard deviation of
X. Note that the standard deviation represents the root mean

square spread of the r.v X around its mean .




Expanding (6-17) and using the linearity of the integrals, we
get

Var (X) =o% = [ (x* - 2xu + p? )ty (x)dx
- j_+:x2 £, (x)dx — zuf:x £ (X)dX + p°
=E(X?)-p2=E(X?)-[E(X)] =X?-X". (18
Alternatively, we can use (6-18) to compute o-.

Thus, for example, returning back to the Poissonr.v in (3-
45), using (6-6) and (6-15), we get
o2 =X2-X =(+2)-22=1. (6-19)

Thus for a Poisson r.v, mean and variance are both equal
to Its parameter 2.



To determine the variance of the normal r.v N (u,c?), we
can use (6-16). Thus from (3-29)

5 + o 2 1 _x—u2262
Var(X)zE[(X—u)]=j_oo(X—ﬂ)We( P dx (6-20)

To simplify (6-20), we can make use of the identity

—(X—y)z/ZGZdX 1

[ T (x)dx = I:«/271z7€

for a normal p.d.f. This gives
I+we_(x_“)2/262dx = '\/271'0. (6-21)

Differentiating both sides of (6-21) with respect to o, we
get
j‘+°°(x — /U)z o120 gy _ ﬂ

or

[ uf e e 2 g2, (e22)
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which represents the var (x) in (6-20). Thus for a normal r.v
as In (3-29)

Var(X)=o0" (6-23)

and the second parameter in N (u,o?) Infact represents the
variance of the Gaussian r.v. As Fig. 6.1 shows the larger the
the larger the spread of the p.d.f around its mean. Thus as
the variance of a r.v tends to zero, it will begin to
concentrate more and more around the mean ultimately
behaving like a constant.

Moments: As remarked earlier, in general

m = X"=E(X"), nx>1 (6-24

n

are known as the moments of the r.v X, and



iy = EI(X = u)"] (6-25)

are known as the central moments of X. Clearly, the
mean x =m,, and the variance o* = u,. It is easy to relate m,
and u,. Infact

po=EN(X —u)']= E( n (ijk(—u)”kj

= Z (UE(X V(-p)" = Z (U m, (—u)" . (6-26)

k=0 k=0

In general, the quantities

E[(X —a)"] (6-27)
are known as the generalized moments of X about a, and
Ell X '] (6-28)

are known as the absolute moments of X.



For example, If X ~N (0,02), then it can be shown that

E(X") = 0, n odd,
~|1-3---(n=Dc", n even. (6-29)

1.3---«(n-1o", n even,
2'kle® 217, n=(2k+1), odd.

Direct use of (6-2), (6-13) or (6-14) is often a tedious
procedure to compute the mean and variance, and in this
context, the notion of the characteristic function can be
quite helpful.

(6-30)

E(|><|”)={

Characteristic Function

The characteristic function of ar.v X 1s defined as



D, (0) = E(ejxw)=j+we"x“)fx(x)dx. (6-31)

Thus @®,(0)=1 and |®,(w)/<1 forall o
For discrete r.vs the characteristic function reduces to

D, (0) =) e’ P(X =k). (6-32)

Thus for example, If X~ P(1)as In (3-45), then its
characteristic function is given by

k jo . .
d (a)) — Z eJka) - i —/12 (ﬂ‘e ) e—ieie”" _ ei(ej“’—l). (6-33)

Similarly, |f X 1s a binomial r.v as in (3-44), its
characteristic function is given by

D, (w) = Ze"k“’[Ejpkq“k =Z[n (pe’*)<q"™* =(pe’ +q)". (6-34)
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To illustrate the usefulness of the characteristic function of a
r.v In computing its moments, first it Is necessary to derive
the relationship between them. Towards this, from (6-31)

O, (0) = E(era)): E{i (J-G)X)k}:i L E(Xk)a)k

o K! k=0 k!

E(X?)

=1+ JE(X)o + j° o+ 4 o+ (6-35)

Taking the first derivative of (6-35) with respect to o, and
letting It to be equal to zero, we get

O 0 J 0w =0
Similarly, the second derivative of (6-35) gives
E(X?)=— achxgw) (6-37)
J oW -




and repeating this procedure k times, we obtain the kth

moment of X to be
1 00, (o)

E(X*)=—=

, k=1 6-38
i ow* (6-38)

o=0

We can use (6-36)-(6-38) to compute the mean, variance and
other higher order moments of any r.v X. For example,
If X~ P(4), then from (6-33)

0D (w) _
ow

so that from (6-36)

e *e’" 2jele, (6-39)

E(X)=A1, (6-40)

which agrees with (6-6). Differentiating (6-39) one more
time, we get



2 _ .
0°® X gw) _ ot (e/le"" (Ajejw)Z n ele’wljZejw )’ (6-41)
ow
so that from (6-37)
E(X%)=A1"+ 4, (6-42)

which again agrees with (6-15). Notice that compared to the
tedious calculations in (6-6) and (6-15), the efforts involved
In (6-39) and (6-41) are very minimal.

We can use the characteristic function of the binomial r.v
B(n, p) in (6-34) to obtain its variance. Direct differentiation
of (6-34) gives
oD, (o)
oW

so that from (6-36), E(X)=np asin (6-7).

= jnpe '*(pe’® +q)"* (6-43)



One more differentiation of (6-43) yields
0°® (@)
Ow*
and using (6-37), we obtain the second moment of the
binomial r.v to be

= j2np(e’”(pe’” + q)"* + (n—1)pe > (pe’” + q)"2)  (6-44)

E(X?)=np@+(n-1)p)=n’p® +npqg. (6-45)

Together with (6-7), (6-18) and (6-45), we obtain the
variance of the binomial r.v to be

oy =E(X?)-[E(X)]"=n*p*+npg —n’p? =npg.  (6.a¢)

To obtain the characteristic function of the Gaussian r.v, we
can make use of (6-31). Thus if X ~N(u,c?), then
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\27o ?

Notice that the characteristic function of a Gaussian r.v itself
has the “Gaussian’ bell shape. Thus If X ~ N (0,5?), then

_ ejuw -4u+ja%uxu—jazw)/zazdLl

1 %2252
f,(x)= —e %7, (6-48)
2o

and

D, (w)=e"2 (6-49)
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Fig. 6.2

From Fig. 6.2, the reverse roles of 21n f,(x) and @, (») are
noteworthy (2 vs ﬁ).

In some cases, mean and variance may not exist. For
example, consider the Cauchy r.v defined in (3-39). With

fo(x) = %17

a4+ x?’

E(X)——jwa e =—j [ 2 +deX:oo, (6-50)

clearly diverges to infinity. Similarly




E(X)_—jwa i (6-51)

To compute (6-51), let us examine its one sided factor

+oo X ;
Jo =77 With x=atané

I+OO 2)( ZdX:Inlz a tan 6 0 sec? 0do - J~7r/ Slné?le
0 a + X o a%sec’d cos o
= I”’Zd(cose) —log cos@\ = —logcos = = o, (6-52)
cosé 2

Indicating that the double sided integral in (6-51) does not
converge and Is undefined. From (6-50)-(6-52), the mean
and variance of a Cauchy r.v are undefined.

We conclude this section with a bound that estimates the
dispersion of the r.v beyond a certain interval centered
around Its mean. Since o?* measures the dispersion of



