
Mean, Variance, Moments and 
Characteristic Functions 

For a r.v X, its p.d.f          represents complete information 
about it, and for any Borel set B on the x-axis

Note that          represents very detailed information, and 
quite often it is desirable to characterize the r.v in terms of 
its average behavior. In this context, we will introduce two 
parameters - mean and variance - that are universally used 
to represent the overall properties of the r.v and its p.d.f.
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Mean or the Expected Value of a r.v X is defined as

If X is a discrete-type r.v, then using (3-25) we get

Mean represents the average (mean) value of the r.v in a 
very large number of trials. For example if     then 
using (3-31) ,

is the midpoint of the interval (a,b). 
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On the other hand if X is exponential with parameter     as in 
(3-32), then

implying that the parameter     in (3-32) represents the mean 
value of the exponential r.v.

Similarly if X is Poisson with parameter     as in (3-45), 
using (6-3), we get

Thus the parameter    in (3-45) also represents the mean of 
the Poisson r.v.
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In a similar manner, if X is binomial as in (3-44), then its 
mean is given by

Thus  np represents the mean of the binomial r.v in (3-44).

For the normal r.v in (3-29),
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Thus the first parameter in     is infact the mean of 
the Gaussian r.v X. Given     suppose               defines a 
new r.v with p.d.f            Then from the previous discussion, 
the new r.v Y has a mean      given by (see (6-2)) 

From (6-9), it appears that to determine           we need to 
determine           However this is not the case if only         is 
the quantity of interest. Recall that for any y,

where      represent the multiple solutions of the equation
But(6-10) can be rewritten as
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where the                    terms form nonoverlapping intervals. 
Hence

and hence as y covers the entire y-axis, the corresponding 
x’s are nonoverlapping, and they cover the entire x-axis. 
Hence, in the limit as              integrating both sides of (6-
12), we get the useful formula

In the discrete case, (6-13) reduces to

From (6-13)-(6-14),           is not required to evaluate                    
for                 We can use (6-14) to determine the mean of

where X is a Poisson r.v.  Using (3-45)
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In general,           is known as the kth moment of r.v X. Thus 
if     its second moment is given by (6-15).,)(    PX

 kXE



Mean alone will not be able to truly represent the p.d.f of 
any r.v. To illustrate this, consider the following scenario:  
Consider two Gaussian r.vs       and      
Both of them have the same mean             However, as  
Fig. 6.1 shows, their p.d.fs are quite different. One is more 
concentrated around the mean, whereas the other one     
has a wider spread. Clearly, we need atleast an additional 
parameter to measure this spread around the mean!
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For a r.v X with mean                 represents the deviation of 
the r.v from its mean. Since this deviation can be either 
positive or negative, consider the quantity              and its 
average value                   represents the average mean 
square deviation of X around its mean. Define

With                        and using (6-13) we get

is known as the variance of the r.v X, and its square 
root                           is known as the standard deviation of 
X. Note that the standard deviation represents the root mean 
square spread of the r.v X around its mean        
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Expanding (6-17) and using the linearity of the integrals, we 
get

Alternatively, we can use (6-18) to compute 

Thus , for example, returning back to the Poisson r.v in (3-
45), using (6-6) and (6-15), we get

Thus for a Poisson r.v, mean and variance are both equal       
to its parameter        
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To determine the variance of the normal r.v                  we 
can use (6-16). Thus from (3-29)

To simplify (6-20), we can make use of the identity

for a normal p.d.f. This gives

Differentiating both sides of (6-21) with respect to      we 
get

or 
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which represents the              in (6-20). Thus for a normal r.v 
as in (3-29)

and the second parameter in                  infact represents the 
variance of the Gaussian r.v. As Fig. 6.1 shows the larger the       
the larger the spread of the p.d.f around its mean. Thus as 
the variance of a r.v tends to zero, it will begin to 
concentrate more and more around the mean ultimately 
behaving like a constant.

Moments: As remarked earlier, in general

are known as the moments of the r.v X, and 
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are known as the central moments of X. Clearly, the             
mean              and the variance                It is easy to relate         
and       Infact

In general, the quantities

are known as the generalized moments of X about a, and 

are known as the absolute moments of X.
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For example, if     then it can be shown that

Direct use of (6-2), (6-13) or (6-14) is often a tedious 
procedure to compute the mean and variance, and in this 
context, the notion of the characteristic function can be 
quite helpful.

Characteristic Function

The characteristic function of a r.v X is defined as 
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Thus                   and                   for all             

For discrete r.vs the characteristic function reduces to

Thus for example, if       as in (3-45), then its 
characteristic function is given by

Similarly, if X is a binomial r.v as in (3-44), its 
characteristic function is given by     
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To illustrate the usefulness of the characteristic function of a 
r.v in computing its moments, first it is necessary to derive 
the relationship between them. Towards this, from (6-31)

Taking the first derivative of (6-35) with respect to , and 
letting it to be equal to zero, we get

Similarly, the second derivative of (6-35) gives
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and repeating this procedure k times, we obtain the kth 
moment of X to be 

We can use (6-36)-(6-38) to compute the mean, variance and 
other higher order moments of any r.v X. For example,        
if      then from (6-33)

so that from (6-36)

which agrees with (6-6). Differentiating (6-39) one more 
time, we get
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so that from (6-37)

which again agrees with (6-15). Notice that compared to the 
tedious calculations in (6-6) and (6-15), the efforts involved 
in (6-39) and (6-41) are very minimal.

We can use the characteristic function of the binomial r.v 
B(n, p) in (6-34) to obtain its variance. Direct differentiation 
of (6-34) gives

so that from (6-36),                  as in (6-7).
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One more differentiation of (6-43) yields

and using (6-37), we obtain the second moment of the 
binomial r.v to be

Together with (6-7), (6-18) and (6-45), we obtain the 
variance of the binomial r.v to be

To obtain the characteristic function of the Gaussian r.v, we 
can make use of (6-31). Thus if      then
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Notice that the characteristic function of a Gaussian r.v itself 
has the “Gaussian” bell shape. Thus if      then

and 

),,0(    2NX

,
2

1)(
22 2/

2



x

X exf  (6-48)

(6-49).)( 2/22  eX



2/22e


(b)

22 2/ xe

x
(a)

Fig. 6.2

From Fig. 6.2, the reverse roles of      in          and             are 
noteworthy

In some cases, mean and variance may not exist. For 
example, consider the Cauchy r.v defined in (3-39). With 

clearly diverges to infinity. Similarly
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To compute (6-51), let us examine its one sided factor

With

indicating that the double sided integral in (6-51) does not 
converge and is undefined. From (6-50)-(6-52), the mean 
and variance of a Cauchy r.v are undefined.

We conclude this section with a bound that estimates the 
dispersion of the r.v beyond a certain interval centered 
around its mean.  Since       measures the dispersion of

(6-51)
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