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Random processes - basic concepts

• Topics : 
• Concepts of deterministic and random processes

stationarity, ergodicity

• Basic properties of a single random process
mean, standard deviation, auto-correlation, spectral density

• Joint properties of two or more random processes
correlation, covariance, cross spectral density, simple input-output relations



Random processes - basic concepts

• Deterministic and random processes : 

• deterministic processes :
physical process is represented by explicit mathematical relation 

• Example :
response of a single mass-spring-damper in free vibration in laboratory

• Random processes :
result of a large number of separate causes. Described in probabilistic terms 

and by properties which are averages

• both continuous functions of time (usually), mathematical concepts 



Random processes - basic concepts

• random processes : 

• The probability density function describes the general distribution of the 
magnitude of the random process, but it gives no information on the time 
or frequency content of the process
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Random processes - basic concepts

• Averaging and stationarity : 

• Sample records which are individual representations of the 
underlying process 

• Ensemble averaging : 
properties of the process are obtained by averaging over a collection or 
‘ensemble’ of sample records using values at corresponding times

• Time averaging :
properties are obtained by averaging over a single record in time

• Underlying process
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• Stationary random process :

• Ergodic process : 
stationary process in which averages from a single record are the same 
as those obtained from averaging over the ensemble 

Most stationary random processes can be treated as ergodic 

• Ensemble averages do not vary with time  

Wind loading from extra - tropical synoptic gales can be treated as stationary
random processes

Wind loading from hurricanes - stationary over shorter periods <2 hours
- non stationary over the duration of the storm

Wind loading from thunderstorms, tornadoes - non stationary



Random processes - basic concepts

• Mean value : 

• The mean value,x , is the height of the rectangular area having the same 
area as that under the function x(t)
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• Can also be defined as the first moment of the p.d.f.  (ref. Lecture 3) 
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• Mean square value, variance, standard deviation :

variance,
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standard deviation, x, is the square root of the variance

mean square value,
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(average of the square of the deviation of x(t) from the mean value,x)
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• Autocorrelation : 

The value of x() at  equal to 0 is the variance, x
2
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• The autocorrelation, or autocovariance, describes the general dependency 
of x(t) with its value at a short time later,  x(t+)
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Normalized auto-correlation  : R()= x()/x
2 R(0)= 1



Random processes - basic concepts

• Autocorrelation : 

• The autocorrelation for a random process eventually decays to zero at 
large 
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• The autocorrelation for a sinusoidal process (deterministic) is a cosine 
function which does not decay to zero



Random processes - basic concepts

• Autocorrelation : 

• The area under the normalized autocorrelation function for the fluctuating 
wind velocity measured at a point is a measure of the average time scale 
of the eddies being carried passed the measurement point, say T1
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• If we assume that the eddies are being swept passed at the mean velocity, 
U.T1 is a measure of the average length scale of the eddies

• This is known as the ‘integral length scale’, denoted by lu
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• Spectral density : 

Basic relationship (1) : 

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• The spectral density, (auto-spectral density, power spectral density, spectrum) 
describes the average frequency content of a random process, x(t)

frequency, n

Sx(n)

The quantity  Sx(n).n   represents the contribution to x
2 from the 

frequency increment n

Units of  Sx(n)   :   [units of x]2 . sec
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• Spectral density : 

Basic relationship (2) :

Where XT(n) is the Fourier Transform of the process x(t) taken over the 
time interval -T/2<t<+T/2  

The above relationship is the basis for the usual method of 
obtaining the spectral density of experimental data
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Usually a Fast Fourier Transform (FFT) algorithm is used
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• Spectral density : 

Basic relationship (3) :

The spectral density is twice the Fourier Transform of the autocorrelation 
function

Inverse relationship :

Thus the spectral density and auto-correlation are closely linked -

they basically provide the same information about the process x(t)
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• Cross-correlation : 
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• The cross-correlation function describes the general dependency of x(t) 
with another random process y(t+), delayed by a time delay, 
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• Covariance : 
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• The covariance is the cross correlation function with the time delay, , set 
to zero

(Section 3.3.5 in “Wind loading of structures”)

Note that here x'(t) and y'(t) are used to denote the fluctuating 
parts of x(t) and y(t) (mean parts subtracted)
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• Correlation coefficient : 

• The correlation coefficient, , is the covariance normalized by the 
standard deviations of x and y

When x and y are identical to each other, the value of  is +1 
(full correlation)

When y(t)=x(t), the value of  is  1

In general,  1<  < +1

yx .σσ
(t)(t).y'x'ρ 



Random processes - basic concepts

• Correlation - application : 
• The fluctuating wind loading of a tower depends on the correlation 

coefficient between wind velocities and hence wind loads, at various heights 

For heights, z1, and z2 : )(z).σ(zσ
)(z).u'(zu')z,ρ(z
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• Cross spectral density : 

By analogy with the spectral density :

The cross spectral density is twice the Fourier Transform of the cross-
correlation function for the processes x(t) and y(t) 

The cross-spectral density (cross-spectrum) is a complex number :

Cxy(n) is the co(-incident) spectral density - (in phase)

Qxy(n) is the quad (-rature) spectral density - (out of phase)
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• Normalized co- spectral density : 

It is effectively a correlation coefficient for fluctuations at frequency, n

Application : Excitation of resonant vibration of structures by 
fluctuating wind forces

If x(t) and y(t) are local fluctuating forces acting at different parts 
of the structure, xy(n1) describes how well the forces are 
correlated (‘synchronized’) at the structural natural frequency, n1
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• Input - output relationships : 

There are many cases in which it is of  interest to know how an input random 
process x(t) is modified by a system to give a random output process y(t)

Application : The input is wind force - the output is structural 
response (e.g. displacement acceleration, stress). The ‘system’ is 
the dynamic characteristics of the structure.

Linear system : 1) output resulting from a sum of inputs, is equal 
to the sum of outputs produced by each input individually 
(additive property)

Linear system
Input x(t) Output y(t)

Linear system : 2) output produced by a constant times the input, 
is equal to the constant times the output produced by the input 
alone (homogeneous property)
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• Input - output relationships : 

Relation between spectral density of output and spectral density of input :

|H(n)|2 is a transfer function, frequency response function, or ‘admittance’ 

Proof : Bendat & Piersol,  Newland
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