Joint Probability

The function $p(x, y)$ is a joint probability mass function of the discrete random variables X and Y if

1. $p(x, y) \geq 0$ for all (x, y)
2. $\sum_{x} \sum_{y} p(x, y)=1$
3. $P(X=x, Y=y)=p(x, y)$

For any region A in the xy plane,

$$
\mathrm{P}[(\mathrm{X}, \mathrm{Y}) \in \mathrm{A}]=\sum \sum \mathrm{p}(\mathrm{x}, \mathrm{y})
$$

Example

Two refills for a ballpoint pen are selected at random from a box that contains 3 blue refills, 2 red refills and 3 green refills. If X is the number of blue refills and Y is the number of red refills selected, find
a. The joint probability mass function $\mathrm{p}(\mathrm{x}, \mathrm{y})$, and
b. $\mathrm{P}[(\mathrm{X}, \mathrm{Y}) \in \mathrm{A}]$, where A is the region $\{(x, y) \mid x+y \leq 1\}$

Example - Solution

The possible pairs of values (x, y) are $(0,0),(0,1)$, $(1,0),(1,1),(0,2)$, and $(2,0)$, where $p(0,1)$, for example represents the probability that a red and a green refill are selected. The total number of equally likely ways of selecting any 2 refills from the 8 is:

$$
\binom{8}{2}=\frac{8!}{2!6!}=28
$$

The number of ways of selecting 1 red from 2 red refills and 1 green from 3 green refills is

$$
\binom{2}{1}\binom{3}{1}=6
$$

Example - Solution

Hence, $p(0,1)=6 / 28=3 / 14$. Similar calculations yield the probabilities for the other cases, which are presented in the following table. Note that the probabilities sum to 1.

		X				
	0	1	2	Row Totals		
	0	$\frac{3}{28}$	$\frac{9}{28}$	$\frac{3}{28}$	$\frac{15}{28}$	
y	1	$\frac{3}{14}$	$\frac{3}{14}$		$\frac{3}{7}$	
	2	$\frac{1}{28}$			$\frac{1}{28}$	
Column Totals				$\frac{5}{14}$	$\frac{15}{28}$	

Example - Solution

$$
\mathrm{p}(\mathrm{x}, \mathrm{y})=\frac{\binom{3}{\mathrm{x}}\binom{2}{\mathrm{y}}\binom{3}{2-\mathrm{x}-\mathrm{y}}}{\binom{8}{2}}
$$

for $\mathrm{x}=0,1,2 ; \mathrm{y}=0,1,2 ; 0 \leq \mathrm{x}+\mathrm{y} \leq 2$.
b. $P[(X, Y) \in A]=P(X+Y \leq 1)$

$$
\begin{aligned}
& =p(0,0)+p(0,1)+p(1,0) \\
& =\frac{3}{28}+\frac{3}{14}+\frac{9}{28} \\
& =\frac{9}{14}
\end{aligned}
$$

Joint Density Functions

The function $f(x, y)$ is a joint probability density function of the continuous random variables X and Y if

1. $f(x, y) \geq 0$ for all (x, y)
2. $\int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$
3. $\mathrm{P}[(\mathrm{X}, \mathrm{Y}) \in \mathrm{A}]=\int_{\mathrm{A}} \int f(x, y) d x d y$

For any region A in the xy plane.

Marginal Distributions

The marginal probability mass functions of x alone and of Y alone are

$$
g(x)=\sum_{y} p(x, y) \text { and } h(y)=\sum_{x} p(x, y)
$$

for the discrete case.

Marginal Distributions

The marginal probability density functions of x alone and of Y alone are

$$
g(x)=\int_{-\infty}^{\infty} f(x, y) d x d y \text { and } h(y)=\int_{-\infty}^{\infty} f(x, y) d x d y
$$

for the continuous case.

Conditional Probability Distributions

Let X and Y be two discrete random variables, with joint probability mass function $p(x, y)$ and marginal probability mass functions $m(x)$ and $n(y)$. The conditional probability mass function of the random variable Y , given that $\mathrm{X}=\mathrm{x}$, is

$$
l(\mathrm{y} \mid \mathrm{x})=\frac{\mathrm{p}(\mathrm{x}, \mathrm{y})}{\mathrm{m}(\mathrm{x})}
$$

$$
m(x)>0
$$

Similarly, the conditional probability mass function of the random variable X, given that $Y=y$, is

$$
l(\mathrm{x} \mid \mathrm{y})=\frac{\mathrm{p}(\mathrm{x}, \mathrm{y})}{\mathrm{n}(\mathrm{y})}, \quad \mathrm{n}(\mathrm{y})>0
$$

Statistical Independence

Let X and Y be two discrete random variables, with joint probability mass function $p(x, y)$ and marginal probability mass functions $m(x)$ and $n(y)$, respectively. The random variables X and Y are said to be statistically independent if and only if

$$
\mathrm{p}(\mathrm{x}, \mathrm{y})=\mathrm{m}(\mathrm{x}) \mathrm{n}(\mathrm{y})
$$

for all (x, y) within their range.

Statistically Independent

Let $X_{1}, X_{2}, \ldots, X_{n}$ be n discrete random variables, with joint probability mass functions $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and marginal probability mass functions $p_{1}\left(x_{1}\right), p_{2}\left(x_{2}\right), \ldots, p_{n}\left(x_{n}\right)$, respectively. The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to be mutually statistically independent if and only if

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p_{1}\left(x_{1}\right), p_{2}\left(x_{2}\right), \ldots, p_{n}\left(x_{n}\right)
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ within their range.

Example

A candy company distributed boxes of chocolates with a mixture of creams, toffees, and nuts coated in both light and dark chocolate. For a randomly selected box, let X and Y , respectively, be the proportions of the light and dark chocolates that are creams and suppose that the joint density function is

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{2}{5}(2 x+3 y), & 0 \leq x \leq 1,0 \leq y \leq 1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

a) Verify whether $\int^{\infty} \int^{\infty} f(x, y) d x d y=1$
b) Find $P[(X, Y) \in A]$, where A is the region $\{(x, y) \mid 0<x<1 / 2$, $1 / 4<y<1 / 2\}$.

Example - Solution

a)

$$
\begin{aligned}
\int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y & =\int_{0}^{1} \int_{0}^{1} \frac{2}{5}(2 x+3 y) d x d y \\
& =\int_{0}^{1} \frac{2 x^{2}}{5}+\left.\frac{6 x y}{5}\right|_{x=0} ^{x=1} d y \\
& =\int_{0}^{1}\left(\frac{2}{5}+\frac{6 y}{5}\right) d y=\frac{2 y}{5}+\left.\frac{3 y^{2}}{5}\right|_{0} ^{1} \\
& =\frac{2}{5}+\frac{3}{5}=1
\end{aligned}
$$

3D plotting for example problem

Example - Solution

b) $P[(X, Y) \in A]=P\left(0<X<\frac{1}{2}, \frac{1}{4}<Y<\frac{1}{2}\right)$

$$
\begin{aligned}
& =\int_{\frac{1}{4}}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} \frac{2}{5}(2 x+3 y) d x d y \\
& =\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{2 x^{2}}{5}+\left.\frac{6 x y}{5}\right|_{x=0} ^{x=\frac{1}{2}} d y \\
& =\int_{\frac{1}{4}}^{\frac{1}{2}}\left(\frac{1}{10}+\frac{3 y}{5}\right) d y=\frac{y}{10}+\left.\frac{3 y^{2}}{10}\right|_{\frac{1}{4}} ^{\frac{1}{2}} \\
& =\frac{1}{10}\left[\left(\frac{1}{2}+\frac{3}{4}\right)-\left(\frac{1}{4}+\frac{3}{16}\right)\right]=\frac{13}{160}
\end{aligned}
$$

Example

Show that the column and row totals of the following table give the marginal distribution of X alone and of Y alone.

			X		
		0	1	2	Row Totals
	0	$\frac{3}{28}$	$\frac{9}{28}$	$\frac{3}{28}$	$\frac{15}{28}$
y	1	$\frac{3}{14}$	$\frac{3}{14}$		$\frac{3}{7}$
	2	$\frac{1}{28}$			$\frac{1}{28}$
Column Totals		$\frac{5}{14}$	$\frac{15}{28}$	$\frac{3}{28}$	1

Example - Solution

For the random variable X, we see that

$$
\begin{aligned}
P(X=0) & =g(0)=\sum_{y=0}^{2} f(0, y)=f(0,0)+f(0,1)+f(0,2) \\
& =\frac{3}{28}+\frac{3}{14}+\frac{1}{28}=\frac{5}{14} \\
P(X=1) & =g(1)=\sum_{y=0}^{2} f(1, y)=f(1,0)+f(1,1)+f(1,2) \\
& =\frac{9}{28}+\frac{3}{14}+0=\frac{15}{28} \\
P(X=2) & =g(2)=\sum_{y=0}^{2} f(2, y)=f(2,0)+f(2,1)+f(2,2) \\
& =\frac{3}{28}+0+0=\frac{3}{28}
\end{aligned}
$$

Example

Find $g(x)$ and $h(y)$ for the joint density function of the previous example :

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{2}{5}(2 x+3 y), & 0 \leq x \leq 1,0 \leq y \leq 1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Example - Solution

By definition,

$$
g(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{0}^{1} \frac{2}{5}(2 x+3 y) d y=\frac{4 x y}{5}+\left.\frac{6 y^{2}}{10}\right|_{y=0} ^{y=1}=\frac{4 x+3}{5}
$$

For $0 \leq x \leq 1$, and $g(x)=0$ elsewhere. Similarly,

$$
h(y)=\int_{-\infty}^{\infty} f(x, y) d x=\int_{0}^{1} \frac{2}{5}(2 x+3 y) d x=\frac{4(1+3 y)}{5}
$$

For $0 \leq y \leq 1$, and $h(y)=0$ elsewhere.

Conditional Probability Distribution

Let X and Y be two continuous random variables, with joint probability density function $f(x, y)$ and marginal probability density functions $\mathrm{g}(\mathrm{x})$ and $\mathrm{h}(\mathrm{y})$. The conditional probability density function of the random variable Y , given that $\mathrm{X}=\mathrm{x}$, is

$$
f(y \mid x)=\frac{f(x, y)}{g(x)}, \quad g(x)>0
$$

Similarly, the conditional probability density function of the random variable X, given that $Y=y$, is

$$
f(x \mid y)=\frac{f(x, y)}{h(y)}, \quad \mathrm{h}(\mathrm{y})>0
$$

Example

Given the joint density function

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x\left(1+3 y^{2}\right)}{4}, & 0<x<2,0<y<1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Find $g(x), h(y), f(x \mid y)$, and evaluate $P(1 / 4<X<1 / 2 \mid Y=1 / 3)$.

Example - Solution

By definition,

$g(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{0}^{1} \frac{x\left(1+3 y^{2}\right)}{4} d y=\frac{x y}{4}+\left.\frac{x y^{3}}{4}\right|_{y=0} ^{y=1}=\frac{x}{2}, \quad 0<\mathrm{x}<2$
and

$$
h(y)=\int_{-\infty}^{\infty} f(x, y) d x=\int_{0}^{2} \frac{x\left(1+3 y^{2}\right)}{4} d y=\frac{x^{2}}{8}+\left.\frac{3 x^{2} y^{2}}{8}\right|_{x=0} ^{x=2}=\frac{1+3 y^{2}}{2}, \quad 0<\mathrm{y}<1
$$

therefore,

$$
f(x \mid y)=\frac{f(x, y)}{h(y)}=\frac{x\left(1+3 y^{2}\right) / 4}{\left(1+3 y^{2}\right) / 2}=\frac{x}{2}, \quad 0<\mathrm{x}<2
$$

and

$$
P\left(\left.\frac{1}{4}<X<\frac{1}{2} \right\rvert\, Y=\frac{1}{3}\right)=\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{x}{2} d x=\frac{3}{64} .
$$

Statistical Independence

Let X and Y be two continuous random variables, with joint probability density function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ and marginal probability density functions $\mathrm{g}(\mathrm{x})$ and $\mathrm{h}(\mathrm{y})$, respectively. The random variables X and Y are said to be statistically independent if and only if

$$
f(x, y)=g(x) h(y)
$$

for all (x, y) within their range.

Statistically Independent

Let $X_{1}, X_{2}, \ldots, X_{n}$ be n continuous random variables, with joint probability density functions $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and marginal probability functions $f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), \ldots, f_{n}\left(x_{n}\right)$, respectively. The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to be mutually statistically independent if and only if

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), \ldots, f_{n}\left(x_{n}\right)
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ within their range.

Example

Two refills for a ballpoint pen are selected at random from a box that contains 3 blue refills, 2 red refills and 3 green refills. If X is the number of blue refills and Y is the number of red refills selected, Show that the random variables are not statistically independent.

Example - Solution

Let us consider the point (0,1). From the following table:

Example - Solution

We find the three probabilities $f(0,1), g(0)$, and $h(1)$ to be

$$
\begin{aligned}
f(0,1) & =\frac{3}{14}, \\
g(0) & =\sum_{y=0}^{2} f(0, y)=\frac{3}{28}+\frac{3}{14}+\frac{1}{28}=\frac{5}{14}, \\
h(1) & =\sum_{y=0}^{2} f(x, 1)=\frac{3}{14}+\frac{3}{14}+0=\frac{3}{17}
\end{aligned}
$$

Clearly, $\quad f(0,1) \neq g(0) h(1) \quad$ and therefore X and Y are not statistically independent.

