Bi-dimensional Random variables

e Moments of a random variable X
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Example: (continued)
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Example:
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Covariance

Definition: Let X and Y be jointly distributed with mean py and py,

respectively. The covariance of X and Y is defined as

Cov(X,Y) = E[(X — px)(Y — py )] (426)

Theorem 5: Basic properties of the covariance

(a) Cov(X, X)) =Var(X) =o0%

(b) Cov(X,Y) = Cov(Y, X)

(c) Cov(aX +b,cY +d) =acCov(X,Y)
(

)
)

d) |Cov(X,Y)| < oxoy

(e) Cou(X,Y) = E(XY) ~ E(X)E(Y)
)

(f) If X and Y are independent, then Cov(X,Y) =0



Covariance

Example 6: Express Var(X +Y) in terms of 0%, 0% and Cov(X,Y).

Var(X +Y)

Theorem 6:
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Correlation coefficient

Definition: The correlation coeflicient of RVs X and Y is defined as

Cov(X.Y)

OX0y

p(X.Y) =

Remarks:

e The main difference between p(X,Y) and Cov(X,Y) is that the former

has been normalized and is a dimensionless quantity.

e In fact, we have that —1 < p(X,Y) <1

Example 8: Let RVs X and Y be jointly uniform over the region D =
{(x,y): 0 <2 <y<1} Find p(X,Y).




Correlation coefficient

Theorem 7: Basic properties of the correlation coefficient
(a) p(X,X) =1

(b)

p(XY) = p(Y. X)
(¢) plaX +b.cY +d) = ep(X.Y) where € = sign(ac).
(@) (X, V)| <1
(e) p(X.Y)=1<Y =aX + b for some a > 0
p(X.Y)=—-1<Y =aX + b for some a < 0

(f) If X and Y are independent. then p(X.,Y) =0
Discussion:

e The correlation coefficient p(X,Y) provides a measure of the degree of

linear association between RVs X and VY.

o If p(X.Y) = 1. then Y = aX + b for some real numbers a > 0 and b.
That is, let L ={(x.y):y =axr+b}. Then P((X.Y)e L)=1:




Correlation coefficient

o If 0 < p(X.Y) < 1, we have an intermediate situation: the joint pdf of
X and Y is more or less concentrated along some line L ={(x,y) :y =

ar + b} with positive slope a > 0.

e Standard terminology:
- if p(X,Y) > 0. we say that X and Y are positively correlated
- if p(X,Y) < 0. we say that X and Y are negatively correlated

- if p(X.Y) = 0. we say that X and Y are uncorrelated




Second moment (correlation matrix)
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Second central moment (covariance matrix)
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Notice that




An 1mportant relation:
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Bivariate Gaussian Random Variables X, X,

Let X, and X, be jointly Gaussian
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where p=COV(XI,XE)/O'2




Bivariate Gaussian PDF (Joint Gaussian density function)
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Examples:

(@) Let N=2, =4, p=0.8, my=0

C, |7 =c’1-p* =24,
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(b) Let X, and X, be independent: p=0;alsom, =0, .[j}'I:3 = o'§ =0
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Expectation of Two Random Variables (Random Vectors)

et us use the compact notation
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