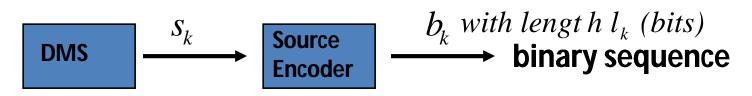
Source Coding Theorem

- Source encoding
 - \implies Efficient representation of data \implies compaction
 - ⇒ Be uniquely decodable
 - ⇒ Need of statistics of the source (There is an algorithm called "Lempel-Ziv" for unknown statistics of the source)
- → (Another frequent method is Run-Length code)

Source Coding Theorem (cont')



⇒ The average code-Length, \overline{L} , is $\overline{L} = \sum_{k=0}^{K-1} p_k l_k$ ⇒ The coding efficiency, $\eta = \frac{L_{\min}}{\overline{L}}$ where L_{\min} is the minimum possible value of \overline{L} Shannon's first theorem : Source-coding theorem

• Given a dms of entropy H(S), the average code-word length \overline{L} for any source coding is

 $L \ge H(S)$

i.e.) $L_{\min} = H(S)$ & $\eta = \frac{H(S)}{\overline{L}}$

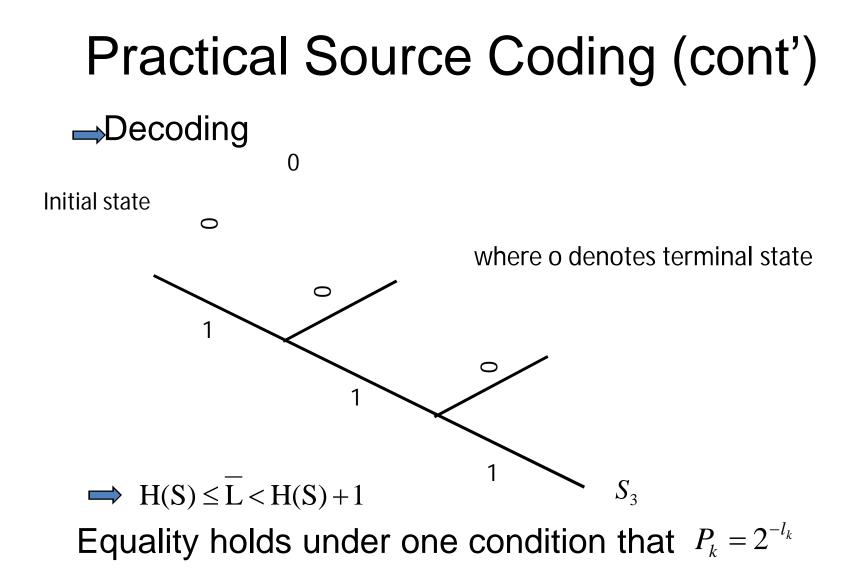
Practical Source Coding

• Prefix coding

Def. : A code in which no code-word is the prefix of any other code-word

Ex)

Symbols	P _k	code1()	code2()	Code3()
S ₀	0.5	0	0	0
S_1	0.25	1	10	0 1
S_2	0.125	0 0	110	011
S_3	0.125	11	111	0111



Huffman Coding

- Property
 - \implies a prefix code
 - \implies average word length *L*
 - \longrightarrow to fundamental limit , H(S)
 - ⇒ optimum
- Algorithm shown by ex.

Symbol	P_k (stage1)	Stage 2	Stage 3	stage4
S ₀	0.4	0.4	0.4	0.6
S_1 S_2	0.2	0.2	10.4 $-$	0.4
S_3	0.1	0.2		
S_4	0.1			

Huffman Coding (cont')

• The result is

Symbol	P_k	Code - word
S_0	0.4	0 0
S_1	0.2	1 0
S_{2}	0.2	1 1
S_3	0.1	010
S_4	0.1	011

rightarrow hen, $\overline{L} = 2.2$

while, H(S) = 2.12193

• Huffman encoding is not unique.

1)
$$0$$
 or 1 \longrightarrow trivial 0

Practical Source Coding (cont')

Set the combined symbol with equal prob.,

- a) as high as possible
- or b) as low as possible
- → get the same average code-word length, but with different variance