Source Coding Theorem

- Source encoding
\Rightarrow Efficient representation of data \longrightarrow compaction
\Rightarrow Be uniquely decodable
\Rightarrow Need of statistics of the source
(There is an algorithm called "Lempel-Ziv" for unknown statistics of the source)
\longrightarrow (Another frequent method is Run-Length code)

Source Coding Theorem (cont')

- Variable length code \longleftrightarrow Fixed length code

\Rightarrow The average code-Length, \bar{L}, is

$$
\bar{L}=\sum_{\mathrm{k}=0}^{\mathrm{K}-1} p_{k} l_{k}
$$

\Rightarrow The coding efficiency, $\quad \eta=\frac{L_{\text {min }}}{\bar{L}}$ where $L_{\min }$ is the minimum possible value of \bar{L}

Shannon's first theorem : Source-coding theorem

- Given a dms of entropy $\mathrm{H}(S)$, the average code-word length \bar{L} for any source coding is

$$
\begin{gathered}
\bar{L} \geq H(S) \\
\text { i.e.) } L_{\min }=H(S) \quad \& \quad \eta=\frac{H(S)}{\bar{L}}
\end{gathered}
$$

Practical Source Coding

- Prefix coding
\Rightarrow Def. : A code in which no code-word is the prefix of any other code-word
Ex)

Symbols	P_{k}	code1()	code2()	Code3()
S_{0}	0.5	0	0	0
S_{1}	0.25	1	10	01
S_{2}	0.125	00	110	011
S_{3}	0.125	11	111	0111

Practical Source Coding (cont')

\Rightarrow Decoding
0
Initial state

Equality holds under one condition that $P_{k}=2^{-k_{k}}$

Huffman Coding

- Property
\Rightarrow a prefix code
\Rightarrow average word length \bar{L}
\longrightarrow to fundamental limit, $\mathrm{H}(\mathrm{S})$
\Rightarrow optimum
- Algorithm shown by ex.

Huffman Coding (cont')

- The result is

Symbol	P_{k}	Code - word
S_{0}	0.4	0.0
S_{1}	0.2	100
S_{2}	0.2	11
S_{3}	0.1	0110
S_{4}	0.1	011

\Rightarrow hen, $\bar{L}=2.2$
while, $H(S)=2.12193$

- Huffman encoding is not unique.

1) $0 \square \quad$ or $\quad 1 \square$ trivial

Practical Source Coding (cont')

Set the combined symbol with equal prob. ,
a) as high as possible
or
b) as low as possible
\longrightarrow get the same average code-word length, but with different variance

