Fundamental Limits on Performance

- Given an information source, and a noisy channel
 - 1) Limit on the minimum number of bits per symbol
 - 2) Limit on the maximum rate for reliable communication
 - → Shannon's 3 theorems

Uncertainty, Information and Entropy

- Let the source alphabet, $S = \{s_{0}, s_{1}, ..., s_{K-1}\}$ with the prob. of occurrence $P(s = s_{k}) = p_{k}, k = 0, 1, ..., K-1 \text{ and } \sum_{k=1}^{K-1} p_{k} = 1$
- Assume the discrete memoryless source (DMS)

What is the measure of information?

k=()

Uncertainty, Information, and Entropy (cont')

➡ Interrelations between info., uncertainty or surprise
 ● No surprise → no information

 (≈ Info. ∝ 1/Prob.)

 ● If A is a surprise and B is another surprise, then what is the total info. of simultaneous A and B

 \longrightarrow Info.(A $\square B$) \propto Info.(A) + Info.(B)

The amount of info may be related to the inverse of the prob. of occurrence.

$$\therefore I(S_k) = \log(\frac{1}{p_k})$$

Property of Information

1)
$$I(s_k) = 0$$
 for $p_k = 1$
2) $I(s_k) \ge 0$ for $0 \le p_k \le 1$
3) $I(s_k) > I(s_i)$ for $p_k < p_i$
4) $I(s_k s_i) = I(s_k) + I(s_i)$, if s_k and s_i statist.indep.

* Custom is to use logarithm of base 2

Entropy

- Def. : measure of average information contents per source symbol
 ⇒ The mean value of (sk) over S, H(S) = E[I(sk)] = ∑^{K-1} k pk I(sk) = ∑^{K-1} k log 2(1/pk)
 ⇒ The property of H
 - $0 \le H(S) \le \log_2 K$, where K is radix (= # of symbols) **1**) H(S)=0,iff $p_k = 1$ for some k, and all other p_i 's=0 No Uncertainty
 - 2) H(S)= $\log_2 K$, iff $p_k = \frac{1}{K}$ for all k Maximum Uncertainty

Entropy of Binary Memoryless Source

- For binary source of symbol 0 with , P_0 and symbol 1 with $p_1 (=1-p_0)$