AUTO CORRELATION AND CROSS CORRELATION FUNCTIONS

- Auto Correlation
- In auto correlation a signal is compared to a time delayed version of itself. This results in the Auto Correlation Function or ACF.
- Consider the function v(t), (which in general may be random or deterministic).
- The ACF, $R(\tau)$, is given by

$$
R(\tau)=\frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} v(t) v(t-\tau) d t
$$

Of particular interest is the ACF when $\tau=0$, and $\mathrm{v}(\mathrm{t})$ represents a voltage signal:

$$
R(0)=\frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} v(t)^{2} d t
$$

- $R(0)$ represents the mean square value or normalised average power in the signal $v(t)$

- Cross Correlation

In cross correlation, two 'separate’ signals are compared, eg the functions v 1 (t) and $\mathrm{v} 2(\mathrm{t})$ previously discussed.

The CCF is

$$
R_{12}(\tau)=\frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} v_{1}(t) v_{2}(t-\tau) d t
$$

- Diagrams for ACF and CCF
- Auto Correlation Function, ACF

- Note, if the input is $\mathbf{v 1}(\mathrm{t})$ the output is R11(τ) if the input is $\mathbf{v 2}(\mathrm{t})$ the output is $\mathbf{R 2 2}(\tau)$

Cross Correlation Function, CCF

- CORRELATION COEFFICIENT

The correlation coefficient, ρ, is the normalised correlation function.

- For cross correlation (ie the comparison of two separate signals), the correlation coefficient is given by:

$$
\rho=\frac{R_{12}(\tau)}{\sqrt{R_{11}(0) \cdot R_{22}(0)}}
$$

- Note that $R_{11}(0)$ and $R_{22}(0)$ are the mean square values of the functions $v_{1}(t)$ and $v_{2}(t)$ respectively.
- For auto correlation (ie the comparison of a signal with a time delayed version of itself), the correlation coefficient is given by:

$$
\rho=\frac{R(\tau)}{\sqrt{R(0) \cdot R(0)}}=\frac{R(\tau)}{R(0)}
$$

- For signals with a zero mean value, ρ is in the range $-1<\rho<+1$
- If $\rho=+1$ then the are equal (Positive correlation).
- If $\rho=0$, then there is no correlation, the signals are considered to be orthogonal.
- If $\rho=-1$, then the signals are equal and opposite (negative correlation)
- EXAMPLES OF CORRELATION CONTINUOUS TIME FUNCTIONS

