AUTO CORRELATION AND CROSS CORRELATION FUNCTIONS

Auto Correlation

- In auto correlation a signal is compared to a time delayed version of itself. This results in the Auto Correlation Function or ACF.
- Consider the function v(t), (which in general may be random or deterministic).
- The ACF, $R(\tau)$, is given by

$$R(\tau) = \frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} v(t)v(t-\tau)dt$$

 Of particular interest is the ACF when τ = 0, and v(t) represents a voltage signal:

$$R(0) = \frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} v(t)^2 dt$$

 R(0) represents the mean square value or normalised average power in the signal v(t)

Cross Correlation

 In cross correlation, two 'separate' signals are compared, eg the functions v1(t) and v2(t) previously discussed.

The CCF is

$$R_{12}(\tau) = \frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} v_1(t) v_2(t-\tau) dt$$

- Diagrams for ACF and CCF
- Auto Correlation Function, ACF

Note, if the input is v1(t) the output is R11(τ)
if the input is v2(t) the output is R22(τ)

Cross Correlation Function, CCF

CORRELATION COEFFICIENT

- The correlation coefficient, ρ, is the normalised correlation function.
- For cross correlation (ie the comparison of two separate signals), the correlation coefficient is given by:

$$\rho = \frac{R_{12}(\tau)}{\sqrt{R_{11}(0).R_{22}(0)}}$$

Note that R₁₁(0) and R₂₂(0) are the mean square values of the functions v₁(t) and v₂(t) respectively.

 For auto correlation (ie the comparison of a signal with a time delayed version of itself), the correlation coefficient is given by:

$$\rho = \frac{R(\tau)}{\sqrt{R(0).R(0)}} = \frac{R(\tau)}{R(0)}$$

For signals with a zero mean value, ρ is in the range $-1 < \rho < +1$

- If $\rho = +1$ then the are equal (Positive correlation).
- If ρ = 0, then there is no correlation, the signals are considered to be orthogonal.
- If ρ = -1, then the signals are equal and opposite (negative correlation)

EXAMPLES OF CORRELATION – CONTINUOUS TIME FUNCTIONS

