Correlation

CORRELATION

- Introduction
- Correlation Function Continuous-Time Functions
- Auto Correlation and Cross Correlation Functions
- Correlation Coefficient
- Correlation Discrete-Time Signals
- Correlation of Digital Signals

INTRODUCTION

Correlation techniques are widely used in signal processing with many applications in telecommunications, radar, medical electronics, physics, astronomy, geophysics etc Correlation has many useful properties, giving for example the ability to:

- Detect a wanted signal in the presence of noise or other unwanted signals.
- Recognise patterns within analogue, discretetime or digital signals.
- Allow the determination of time delays through various media, eg free space, various materials, solids, liquids, gases etc . . .

- Correlation is a comparison process.
- The correlation betweeen two functions is a measure of their similarity.
- The two 'functions' could be very varied. For example fingerprints: a fingerprint expert can measure the correlation between two sets of fingerprints.

- This section will consider the correlation of signals expressed as functions of time. The signals could be continuous, discrete time or digital.
- When measuring the correlation between two functions, the result is often expressed as a correlation coefficient, ρ, with ρ in the range –1 to +1.

Correlation involves multiplying, 'sliding' and integrating

Consider 2 functions

Consider 2 more functions

Consider 2 more functions

CONVOLUTION

CORRELATION FUNCTION – CONTINUOUS TIME FUNCTIONS

- Consider two continuous functions of time, v₁(t) and v₂(t). The functions may be random or deterministic.
- The correlation or similarity between these two functions measured over the interval T is given by:

$$R_{12}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} v_1(t) v_2(t-\tau) dt$$

- The functions may be deterministic or random.
- R12(τ) is the correlation function and is a measure of the similarity between the functions v1(t) and v2(t).
- The measure of correlation is a function of a new variable, τ, which represents a time delay or time shift between the two functions.

- Note that correlation is determined by multiplying one signal, v1(t), by another signal shifted in time, v2(t-T), and then finding the integral of the product,
- Thus correlation involves multiplication, time shifting (or delay) and integration.

- The integral finds the average value of the product of the two functions, averaged over a long time (T → ∞) for non-periodic functions.
- For periodic functions, with period T, the correlation function is given by:

$$R_{12}(\tau) = \frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} v_1(t) v_2(t-\tau) dt$$

The correlation process is illustrated below:

As previously stated:

$$R_{12}(\tau) = \frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} v_1(t) v_2(t-\tau) dt$$

- The output R₁₂(T) is the correlation between the two functions as a function of the delay T.
- The correlation at a particular value of T would be solved by solving R₁₂(T),