Entity Declaration

Figure 2.3 A half-adder circuit.
entity HALF_ADDER is port (A, B: in BIT; SUM, CARRY: out BIT); end HALF_ADDER;

Architecture Body

- The internal details of an entity are specified by an architecture body using any of the following modeling styles:

1. As a set of interconnected components (to represent structure),
2. As a set of concurrent assignment statements (to represent dataflow),
3. As a set of sequential assignment statements (to represent behavior),
4. Any combination of the above three.

Structural Style of Modeling

- Example: Half Adder
architecture HA_STRUCTURE of HALF_ADDER is
component XOR2
port (X, Y: in BIT; Z: out BIT);
end component;
component AND2
port (L, M: in BIT; N: out BIT);
end component;
begin
X1: XOR2 port map (A, B, SUM);
A1: AND2 port map (A, B, CARRY);
end HA_STRUCTURE;

Dataflow Style of Modeling

- Example: Half Adder
architecture HA_CONCURRENT of HALF_ADDER is begin
SUM <= A xor B after 8 ns;
CARRY <= A and B after 4 ns; end HA_CONCURRENT;

Behavioral Style of Modeling

- architecture HA_beh of HALF_ADDER is begin
process (A, B)
begin
SUM <= A xor B;
CARRY <= A and B;
end process;
End HA_beh;

Mixed Style of Modeling

- It is possible to mix the three modeling styles that we have seen so far in a single arrhitortimo hndı

Figure 2.7 A 1-bit full-adder.

Mixed Style of Modeling cont..

entity FULL_ADDER is
port (A, B, CIN: in BIT; SUM, COUT: out BIT); end FULL_ADDER;
architecture FA_MIXED of FULL_ADDER is component XOR2
port (X,Y: in BIT; Z: out BIT);
end component;
signal S1: BIT;

Mixed Style of Modeling cont..

begin
X1: XOR2 port map (A, B, S1); process (A, B, CIN)
variable T1, T2, T3: BIT;
begin
T1 :=A and B;
T2 := B and CIN;
T3:=A and CIN;
COUT <= T1 or T2 or T3;
end process;
SUM <= S1 xor CIN;

- dataflow. end FA_M!XED;
- structure.
- behavior.

