
Packages

 A package provides a convenient

mechanism to store and share

declarations that are common across

many design units. A package is

represented by

1. a package declaration

2. a package body.

Libraries or Design Libraries

 A compiled VHDL description is stored

in a design library.

 A design library is an area of storage

in the file system of the host

environment.

 The format of this storage is not

defined by the language. Typically, a

design library is implemented on a

host system as a file directory and the

compiled descriptions are stored as

files in this directory.

Design Libraries cont..

 An arbitrary number of design libraries
may be specified. Each design library
has a logical name with which it is
referenced inside a VHDL description.

 There is one design library with the
logical name, STD, predefined in the
language; this library contains the
compiled descriptions for the two
predefined packages, STANDARD and
TEXTIO.

 Exactly one design library must be
designated as the working library with
the logical name, WORK.

Design Libraries cont..

Design File

 The design file is an ASCII file
containing the VHDL source. It can
contain one or more design units,
where a design unit is one of the
following:

• entity declaration,

• architecture body,

• configuration declaration,

• package declaration,

• package body.

Design File

 Design units are further classified as

1. Primary units: These units allow
items to be exported out of the design
unit. They are

a. entity declaration: The items declared
in an entity declaration are implicitly
visible within the associated
architecture bodies.

b. package declaration: Items declared
within a package declaration can be
exported to other design units using
context clauses.

Design File cont..

2. Secondary units: These units do not

allow items declared within them to be

exported out of the design unit, that is,

these items cannot be referenced in

other design units. These are

a. architecture body: A signal declared

in an architecture body, for example,

cannot be referenced in other design

units.

b. package body.

Generics

 It is often useful to pass certain types

of information into a design description

from its environment.

 Examples of such information are

rise and fall delays, and size of

interface ports. This is accomplished

by using generics. Generics of an

entity are declared along with its ports

in the entity declaration.

An example of a generic N-input

and gate-
entity AND_GATE is

generic (N: NATURAL);

port (A: in BIT_VECTOR(1 to N); Z: out BIT);

end AND_GATE;

architecture GENERIC_EX of AND_GATE is

begin

process (A)
variable AND_OUT: BIT;

begin
AND_OUT := '1';

for K in 1 to N loop
AND_OUT := AND_OUT and A(K);

end loop;

Z <= AND_OUT;

end process;

end GENERIC_EX;

Generics cont..

In this example, the size of the input port
has been modeled as a generic.

A generic declares a constant object.
The value of this constant can be specified

as a locally static expression in one of
the following:

1. entity declaration
2. component declaration
3. component instantiation
4. configuration specification
5. configuration declaration

Generics cont..

 value for a generic must be explicitly
specified.

 The value for a generic may be specified
in the entity declaration for an entity as
shown in this example. This is the default
value for the generic.

 entity NAND_GATE is
◦ generic (M: INTEGER := 2);

◦ port (A: in BIT_VECTOR(M downto 1); Z:
out BIT);

 end NAND_GATE;

Structural Layout

MODULE 1

(HALF-ADDER)

MODULE 2

(HALF-

ADDER)

MODULE 3

(OR GATE)

A

B

W-SUM

W-

CARRY1

W-

CARRY2

CARRY IN CARRY

SUM

 Allow for hierarchical model layout

which means that a module can be

assembled out of several sub

modules.

 The connection between these sub

modules are defined within the

architecture of a top module.

 A Full adder can be built with the help

of two half adders (module 1, module

2) and OR gate (module 3)

