
Subprograms

 A subprogram defines a sequential

algorithm that performs a certain

computation and executes in zero

simulation time. There are two kinds of

subprograms:

 1. Functions: These are usually used

for computing a single value.

 2. Procedures: These are used to

partition large behavioral descriptions.

Procedures can return zero or more

values.

Subprograms cont..

 A subprogram is defined using a

subprogram body. The typical format

for a subprogram body is

subprogram-specification is

subprogram-item-declarations

begin

subprogram-statements

end [subprogram-name];

Subprograms cont..

 The subprogram-specification

specifies the name of a subprogram

and defines its interface, that is, it

defines the formal parameter names,

their class (i.e., signal, variable, or

constant), their type, and their mode

(whether they are in, out, or inout).

Functions

 Functions are used to describe

frequently used sequential algorithms

that return a single value.

 This value is returned to the calling

program using a return statement.

Some of their common uses are as

resolution functions.

Functions cont..

 The general syntax of a subprogram
specification for a function body is
function

function-name (parameter-list) return
return-type is

Begin

sequential statements

return return value

End function-name;

Functions cont..

A function call has the form-

function-name (list-of-actual-values)

Types of function-

1.Pure function:-It return the same

value whenever it is called.

2. Impure function:-It can return

different values each time when it is

called.

Example of Function

 This function adds two 4 bit vectors

and return a 4 bit sum.

Function ADD(A,B:bit_vector(0 to 3))

Return bit_vector is

Variable cout:bit;

Variable cin:bit:=‘0’;

Begin

 for i in 0 to 3 loop

Example of Function cont..

Cout:= (A(i) and B(i)) or (A(i) and cin) or

(B(i) and cin);

Sum(i):=A(i) xor B(i) xor cin;

Cin:=Cout;

End loop;

Return sum;

End Add;

Procedures

 Procedures allow decomposition of large

behaviors into modular sections. In contrast to

a function, a procedure can return zero or

more values using parameters of mode out

and inout. The syntax for the subprogram

specification for a procedure body is

 procedure procedure-name (parameter-

list)

 Parameters may be constants, variables, or

signals and their modes may be in, out, or

inout.

Example of Procedures

type OP_CODE is (ADD, SUB, MUL, DIV,
LT, LE, EQ);

. . .
procedure ARITH_UNIT (A, B: in

INTEGER; OP: in OP_CODE;
Z: out INTEGER; ZCOMP: out

BOOLEAN) is
begin
case OP is
when ADD=>Z:=A+B;
when SUB=>Z:=A-B;

when MUL=>Z:=A*B;

when DIV => Z := A/B;

when LT => ZCOMP := A < B;

when LE => ZCOMP := A <= B;

when EQ => ZCOMP := A = B;

end case;

end ARITH_UNIT;

