
Assertion Statement

 Assertion statements are useful in
modeling constraints of an entity. For
example, you may want to check if a
signal value lies within a specified range,
or check the setup and hold times for
signals arriving at the inputs of an entity.
If the check fails, an error is reported.

 The syntax of an assertion statement is
assert boolean-expression
[report string-expression]
[severity expression]:

Assertion Statement cont..

 If the value of the boolean expression is false,
the report message is printed along with the
severity level. The expression in the severity
clause must generate a value of type
SEVERTTY_LEVEL (a predefined enumerated
type in the language with values NOTE,
WARNING, ERROR, and FAILURE).

 The severity level is typically used by a simulator
to initiate appropriate actions depending on its
value. For example, if the severity level is
ERROR, the simulator may stop the simulation
process and provide relevant diagnostic
information. At the very least, the severity level is
displayed.

Other Sequential Statements

 There are two other forms of

sequential statements

 1. Procedure call statement,

 2. Return statement.

Return statement

 A return statement, which is also a sequential
statement, is a special statement that is
allowed only within subprograms. The format
of a return statement is

 return [Expression];

 The return statement causes the subprogram
to terminate and control is returned back to
the calling object. All functions must have a
return statement and the value of the
expression in the return statement is returned
to the calling program. For procedures,
objects of mode out and inout return their
values to the calling program.

Procedure call statement

 Procedures allow decomposition of large
behaviors into modular sections.

 Procedures are invoked by using procedure
calls. A procedure call can either be a sequential
statement or a concurrent statement; this is
based on where the actual procedure call
statement is present. If the call is inside a
process statement or inside another subprogram,
then it is a sequential procedure call statement,
else it is a concurrent procedure call statement.
The syntax of a procedure call statement is

 procedure-name (list-of-actual-parameters);

Procedure call statement

 The actual parameters specify the
expressions that are to be passed into the
procedure and the names of objects that are
to receive the computed values from the
procedure. Actual parameters may be
specified using positional association or
named association. For example,

ARITH_UNIT (D1, D2, ADD, SUM, COMP); --
Positional association.

ARITH_UNIT (Z=>SUM, B=>D2, A=>D1,

OP=>ADD, ZCOMP=>COMP);

-- Named association.

Procedure call statement

cont..
 A sequential procedure call statement is

executed sequentially with respect to the
sequential statements surrounding it
inside a process or a subprogram. A
concurrent procedure call statement is
executed whenever an event occurs on
one of the parameters which is a signal
of mode in or inout.

procedure INT_2_VEC (signal D: out
BIT_VECTOR;

START_BIT, STOP_BIT: in INTEGER;
signal VALUE: in INTEGER);

Concurrent Signal Assignment

Statement
 One of the primary mechanisms for modeling

the dataflow behavior of an entity is by using
the concurrent signal assignment statement.
An example of a dataflow model for a 2-input
or gate.

entity OR2 is

port (signal A, B: in BIT; signal Z: out BIT);

end OR2;

architecture OR2 of OR2 is

begin

Z <= A or B after 9 ns;

end OR2;

Concurrent versus Sequential

Signal Assignment
 Signal assignment statements can also appear

within the body of a process statement. Such
statements are called sequential signal
assignment statements, while signal assignment
statements that appear outside of a process are
called concurrent signal assignment statements.

 Concurrent signal assignment statements are
event triggered, that is, they are executed
whenever there is an event on a signal that
appears in its expression, while sequential
signal assignment statements are not event
triggered and are executed in sequence in
relation to the other sequential statements that
appear within the process.

Example
architecture SEQ_SIG_ASG of FRAGMENT1 is

- A, B and Z are signals.

begin

process (B)

begin -- Following are sequential signal assignment statements:

A<=B;

Z<=A;

end process;

end;

architecture CON_SIG_ASG of FRAGMENT2 is

begin -- Following are concurrent signal assignment
statements:

A<=B;

Z<=A;

end;

