Test input signals

Main content

- Test input signals
- Response of a first-order system
- Performance of a second-order system
- Effects of a third pole and a zero on system response
- Root location and the transient response

Main content

- Steady-state error analysis
- Performance indices
- The simplification of linear systems
- Examples and simulation
- Summary

Introduction

- Transient response
- Steady-state response
- Design specifications
- How to get compromise?

A distinct advantage of feedback control system is the ability to adjust the transient and steady-state response

3.1 Test input signals

The standard test input signals commonly used are:

- Step input
- Ramp input
- Parabolic input
- Sinusoidal input
- Unit impulse input

Representation of test signals

Input

- Step: time domain
- Ramp:
- Parabolic:
- sinusoidal:
frequency domain
$1(t), \quad t \geq 0$
$t, \quad t \geq 0$
$\frac{1}{2} t^{2} \quad t \geq 0$
$A \sin \omega t$

$$
\frac{1}{s}
$$

$$
\frac{1}{s^{2}}
$$

$$
\frac{1}{s^{3}}
$$

$$
\frac{A \omega}{s^{2}+\omega^{2}}
$$

Unit impulse response

Unit impulse: $\delta(t)=\left\{\begin{array}{lc}\frac{1}{\varepsilon}, & -\frac{\varepsilon}{2} \leq t \leq \frac{\varepsilon}{2} \\ 0, & \text { otherwise }\end{array}\right.$

System impulse response: $\quad g(t)=L^{-1}[G(s)]$

System response is the convolution integral of $g(t)$ and $r(t)$:

$$
y(t)=\int_{-\infty}^{t} g(t-\tau) r(\tau) d \tau=L^{-1}[G(s) R(s)]
$$

continue

Standard test signal

The standard test signals are of the general form:

$$
r(t)=t^{n}
$$

And its Laplace transform is:

$$
R(s)=\frac{n!}{s^{n+1}}
$$

Performance indices

(viewpoint from engineering)
Transient Performance:

- Time delay t_{d}
- Rise time t_{r}
- Peak time t_{p}
- Settling time t_{s}
- Percent overshoot $\sigma \%$

Steady-state Performance: Steady-state error

3.2 Response of a first-order system

The model of first-order system

$$
T \dot{c}(t)+c(t)=r(t)
$$

or

$$
T(s)=\frac{C(s)}{R(s)}=\frac{1}{T s+1}
$$

For example, temperature or speed control system and water level regulating system.

Response of first-order system

- Unit step response (No steady-state error)
- Unit impulse response $(\longleftrightarrow$ transfer function $)$
- Unit ramp response (Constant steady-state error)
- Unit parabolic response (Infinite steady-state error)

Important conclusion (for n-order LTI system)

From above analysis, we can see that impulse response of a system is the 1st-order derivative of step response or 2nd-order derivative of ramp response of the system.

Conclusion:
System response for the derivative of a certain input signal is equivalent to the derivative of the response for this input signal.

3.3 Response and performance of a second-order system

- Model of 2nd-order system

$$
T(s)=\frac{Y(s)}{R(s)}=\frac{\omega^{2}}{s^{2}+2 \zeta \omega s+\omega^{2}}
$$

- Roots of characteristic equation (Poles)

$$
s_{1,2}=-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1}
$$

The response depends on ζ and ω_{n}

Unit step response of 2 nd-order system

- If $\zeta<0,2$ positive real-part roots, unstable
- If $0<\zeta<1,2$ negative real-part roots,underdamped
- If $\zeta=1,2$ equal negative real roots,critically damped
- If $\zeta>1,2$ distinct negative real roots,overdamped
- If $\zeta=0,2$ complex conjugate roots, undamped

Case 1: underdamped

- Oscillatory response
- No steady-state error

Case 2 : critically damped

- Mono-incremental response
- No Oscillation
- No steady-state error

Case 3: overdamped

- Mono-incremental response
- slower than critically damped
- No Oscillation
- No steady-state error

Performance evaluation

(underdamped condition)

- Performance indices evaluation

1 Time delay
2 Rise time
3 Peak time
4 Percent overshoot
5 Settling time

- An example of performance evaluation
3.4 Effects of a third pole and a zero on 2nd-order system response
- Effect of a third pole
- Effect of a third zero
- Dominant poles

3.5 Root location and transient response

- Characteristic roots (modes)
- Effects of Zeros on response

STEADY STATE ERROR

$$
e s s=\lim _{s \rightarrow 0} E(s)
$$

$e s s=\lim _{s \rightarrow 0} s R(s) \frac{1}{1+G(S) H(S)}$

