Steady-state response

If the steady-state response of the output does not agree with the steady-state of the input exactly, the system is said to have a steady-state error.

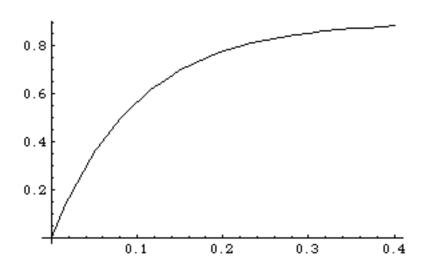
It is a measure of system accuracy when a specific type of input is applied to a control system.

$$R(s) \longrightarrow G(s)$$

$$Y(s) = R(s) G(s)$$

Steady-state error

$$T(s) = 9/(s + 10)$$



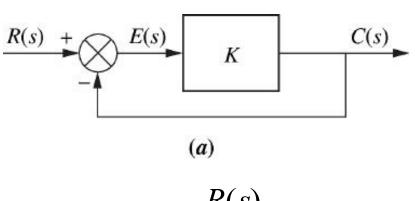
$$Y(s) = 9/s(s+10)$$

$$y(t) = 0.9(1 - e^{-10t})$$

$$y(\infty) = 0.9$$

$$E(s) = R(s) - Y(s)$$

$$e_{ss} = \lim_{s \to 0} s E(s) = 0.1$$



$$E(s) = \frac{R(s)}{1+K}$$

$$e(t) = \frac{1}{1+K}$$

$$\begin{array}{c|c}
\hline
R(s) + \\
\hline
\end{array}$$

$$\begin{array}{c|c}
\hline
E(s) \\
\hline
\end{array}$$

$$\begin{array}{c|c}
K \\
\hline
S \\
\end{array}$$

$$\begin{array}{c|c}
C(s) \\
\hline
\end{array}$$

$$\begin{array}{c|c}
(b) \\
\end{array}$$

$$E(s) = \frac{R(s)}{1 + \frac{K}{s}}$$
$$e(t) = e^{-Kt}$$

InverseLaplaceTransform $\left\{ \frac{1}{s+a}, \frac{a}{s+a} \right\}$, s, t

$$\{E^{-(a t)}, \frac{a}{E^{a t}}\}$$

InverseLaplaceTransform $\left[\left\{\frac{1}{s} * \frac{1}{s+a}, \frac{1}{s} * \frac{a}{s+a}\right\}, s, t\right]$

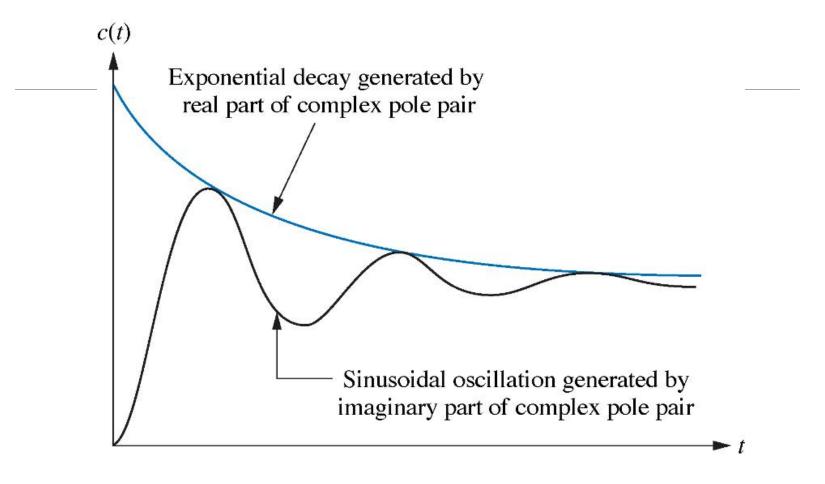
$$\left\{\frac{1 - E^{-(a t)}}{a}, 1 - E^{-(a t)}\right\}$$

Underdamped

$$C(s) = \frac{9}{s(s^2 + 2s + 9)} = \frac{9}{s(s + 1 - j\sqrt{8})(s + 1 + j\sqrt{8})}$$

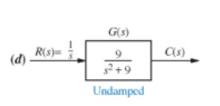
c(t) $c(t) = 1 - e^{-t} (\cos \sqrt{8}t + \frac{\sqrt{8}}{2} \sin \sqrt{8}t)$

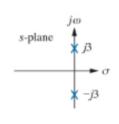
$$c(t) = 1 - e^{-t} (\cos \sqrt{8}t + \frac{\sqrt{8}}{8} \sin \sqrt{8}t)$$



$$c(t) = 1 - e^{-t} (\cos \sqrt{8}t + \frac{\sqrt{8}}{8} \sin \sqrt{8}t)$$

Undamped





$$c(t) = 1 - \cos 3t$$

$$0 = 1 - \cos 3t$$

$$1 - \cos 3t$$

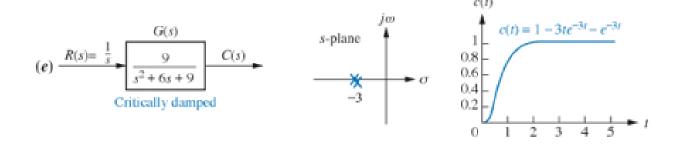
$$1 - \cos 3t$$

$$1 - \cos 3t$$

$$C(s) = \frac{9}{s(s^2+9)}$$

$$c(t) = 1 - \cos 3t$$

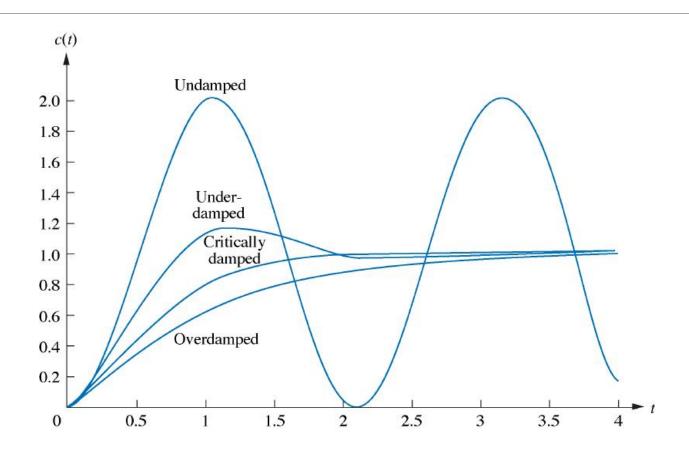
Critically damped

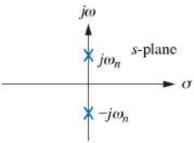


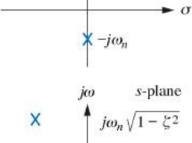
$$C(s) = \frac{9}{s(s^2 + 6s + 9)} = \frac{9}{s(s+3)^2}$$

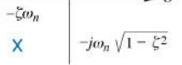
$$c(t) = 1 - 3te^{-3t} - e^{-3t}$$

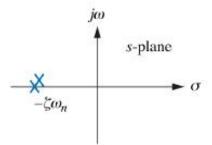
Step response for second order system damping cases









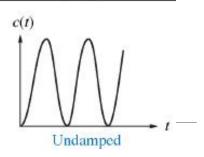


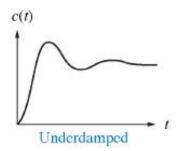
$$\zeta > 1$$

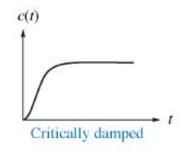
$$-\zeta \omega_n + \omega_n \quad \sqrt{\zeta^2 - 1}$$

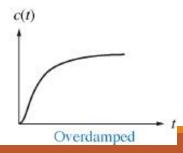
$$s\text{-plane}$$

$$-\zeta \omega_n - \omega_n \quad \sqrt{\zeta^2 - 1}$$









Summary

Overdamped

Poles: Two real at $-\sigma_1$, $-\sigma_2$

Underdamped

Poles: Two complex at $-\sigma_d + j\omega_d$, $-\sigma_d - j\omega_d$

Undamped

Poles: Two imaginary at $+ j\omega_1$, $- j\omega_1$

Critically damped

Poles: Two real at $-\sigma_1$,