Time domain Analysis

Outline

Introduction

Test Input Signals

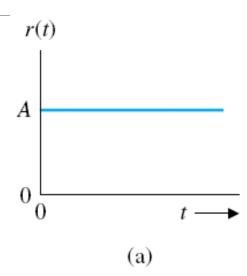
Performance of a second-order system

Effects of a Third Pole and a Zero on the Second-Order System Response

Estimation of the Damping Ratio

The s-plane Root Location and the Transient Response

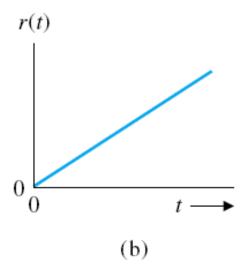
Test Input Signal


Since the actual input signal of the system is usually unknown, a standard test input signal is normally chosen. Commonly used test signals include step input, ramp input, and the parabolic input.

General form of the standard test signals

$$r(t) = t^n$$

$$R(s) = n!/s^{n+1}$$


Test signals r(t) = A tⁿ

n = 0

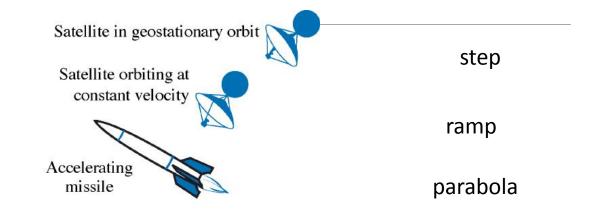
r(t) = A

R(s) = A/s

$$n = 1$$
$$r(t) = At$$

$$R(s) = A/s^2$$

$$n = 2$$


$$r(t) = At^{2}$$

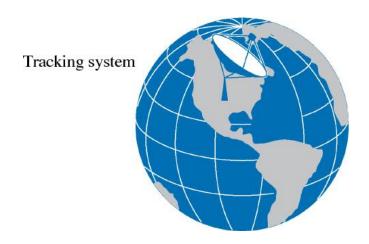
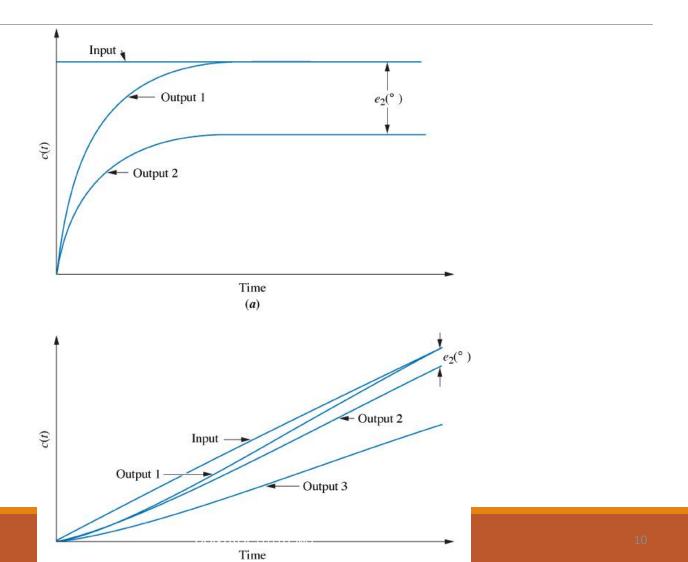

$$R(s) = 2A/s^{3}$$

Table Test Signal Inputs

Test Signal	r(t)	R(s)
	(1) 1 0	D() A(
Step	r(t) = A, t > 0	R(s) = A/s
position	= 0, t < 0	
Ramp	r(t) = At, t > 0	$R(s) = A/s^2$
velocity	= 0, t < 0	
Parabolic	$r(t) = At^2, t > 0$	$R(s) = 2A/s^3$
acceleration	= 0, t < 0	

Test inputs vary with target type

Steady-state error


Is a difference between input and the output for a prescribed test input as

$$t \rightarrow \infty$$

Application to stable systems

Unstable systems represent loss of control in the steady state and are not acceptable for use at all.

Steady-state error: a) step input, b) ramp input

Time response of systems

$$c(t) = c_t(t) + c_{ss}(t)$$

The time response of a control system is divided into two parts:

c_t(t) - transient response

c_{ss}(t) - steady state response

Transient response

All real control systems exhibit transient phenomena to some extend before steady state is reached.

$$\lim c_t(t) = 0 \qquad \text{for } t \to \infty$$

Steady-state response

The response that exists for a long time following any input signal initiation.