Signal-flow graph

- Alternative method to block diagram representation, developed by S.J.Mason.
- Advantage: the availability of a flow graph gain formula, also called Mason's gain formula.
- A signal-flow graph consists of a network in which nodes are connected by directed branches.
- It depicts the flow of signals from one point of a system to another and gives the relationships among the signals. Note that the signal flows in only one direction.

Definitions

- Node - a point representing a signal or variable.
- Branch - unidirectional line segment joining two nodes.
- Path - a branch or a continuous sequence of branches that can be traversed from one node to another node.
- Loop - a closed path that originates and terminates on the same node and along the path no node is met twice.
- Nontouching loops - two loops are said to be nontouching if they do not have a common node.

$a_{11} x_{1}+a_{12} x_{2}+r_{1}=x_{1}$
$a_{21} x_{1}+a_{22} x_{2}+r_{2}=x_{2}$

The linear dependence $T_{i j}$ between the independent variable x_{i}

 (also called the input variable) and a dependent variable x_{j} is$$
T_{i j}=\frac{\sum_{k} P_{i j k} \Delta_{i j k}}{\Delta}
$$

$$
\begin{aligned}
P_{i j k} & =k \text { th path from variable } x_{i} \text { to variable } x_{j} \\
\Delta & =\text { determinant of the graph } \\
\Delta_{i j k} & =\text { cofactor of the path } P_{i j k}
\end{aligned}
$$

and the summation is taken over all possible k paths from x_{i} to x_{j}. The cofactor $\Delta_{i j k}$ is the determinant with the loops touching the k th path removed. The determinant Δ is

$$
\Delta=1-\sum_{n=1}^{N} L_{n}+\sum_{m=1 . q=1}^{M \cdot Q} L_{m} L_{q}-\sum L_{r} L_{s} L_{t}+\cdots
$$

where L_{q} equals the value of the q th loop transmittance. Therefore the rule for evaluating Δ in terms of loops $L_{1}, L_{2}, L_{3}, \ldots, L_{N}$ is
$\Delta=1-$ (sum of all different loop gains)

+ (sum of the gain products of all combinations of two nontouching loops)
- (sum of the gain products of all combinations of three nontouching loops) $+\cdots$.

$$
T_{i j}=\frac{\Sigma_{k} P_{i j k} \Delta_{i j k}}{\Delta},
$$

$P_{p k}=k$ th path from variable x_{i} to variable x_{j}.
$\Delta=$ determinant of the graph,
$\Delta_{i j k}=$ cofactor of the path $P_{i j}$,
and the summation is taken over all possible k paths from x_{i} to x_{j}. The cofactor $\Delta_{i j k}$ is the determinant with the loops touching the k th path removed. The determinant D is

$$
\Delta=1-\sum_{n=1}^{N} L_{n}+\sum_{m=1 . q=1}^{M_{1} Q} L_{m} L_{q}-\sum L_{r} L_{s} L_{t}+\cdots,
$$

where L_{q} equals the value of the q th loop transmittance. Therefore the rule for evaluating Δ in terms of loops $L_{1}, L_{2}, L_{3}, \ldots, L_{N}$ is
$\Delta=1$ - (sum of all different loop gains)

+ (sum of the gain products of all combinations of two nontouching loops)
- (sum of the gain products of all combinations of three nontouching loops)
$+\cdots$ Dr.|lrahim Al-Abbas

Systematic approach:

1. Calculate forward path transfer function P_{k} for each forward path k
2. Calculate all loop transfer functions
3. Consider nontouching loops 2 at a time
4. Consider nontouching loops 3 at a time
5. etc
6. Calculate Δ from steps $2,3,4$ and 5
7. Calculate Δ_{k} as portion of Δ not touching forward path k

1.Calculate forward path transfer function $P k$ for each forward path \boldsymbol{k}.
$P_{1}=G_{1} G_{2} G_{3} G_{4}$ (path1) and $P_{2}=G_{5} G_{6} G_{7} G_{8}($ path2)
2.Calculate all loop TF's.

$$
L_{1}=G_{2} H_{2}, \quad L_{2}=H_{3} G_{3}, \quad L_{3}=G_{6} H_{6}, \quad L_{4}=G_{7} H_{7}
$$

3.Consider nontouching loops 2 at a time.

Loops L1 and L2 do not touch Loops L3 and L4

4. Consider nontouching loops 3 at a time.

None.

5. Calculate Δ from steps $2,3,4$.

$$
\Delta=1-\left(L_{1}+L_{2}+L_{3}+L_{4}\right)+\left(L_{1} L_{3}+L_{1} L_{4}+L_{2} L_{3}+L_{2} L_{4}\right)
$$

6. Calculate Δ_{k} as portion of Δ not touching forward path k.

$$
\Delta_{1}=1-\left(L_{3}+L_{4}\right) \quad \text { and } \quad \Delta_{2}=1-\left(L_{1}+L_{2}\right)
$$

The TF of the system is

$$
\frac{Y(s)}{R(s)}=T(s)=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta}
$$

