Sensitivity

SYSTEM SENSITIVITY

System sensitivity is the ratio of the change in the system transfer function to the change of a process transfer function (or parameter) for a small incremental change.

SENSITIVITY OF SYSTEM TO PARAMETER VARIATIONS

System are time-varying in its nature because of inevitable uncertainties such as changing environment, aging, and other factors that affect a control process.All these uncertainties in open-loop system will result in inaccurate output or low performance. However, a closed-loop system can overcome this disadvantage.

Continue

A PRIMARY ADVANTAGE OF A CLOSED-LOOP FEEDBACK CONTROL SYSTEM IS ITS ABILITY TO REDUCE THE SYSTEM'S SENSITIVITY TO PARAMETER VARIATION.

SENSITIVITY ANALYSIS CONTROL

ROBUST

EFFECT OF PARAMETER VARIATIONS

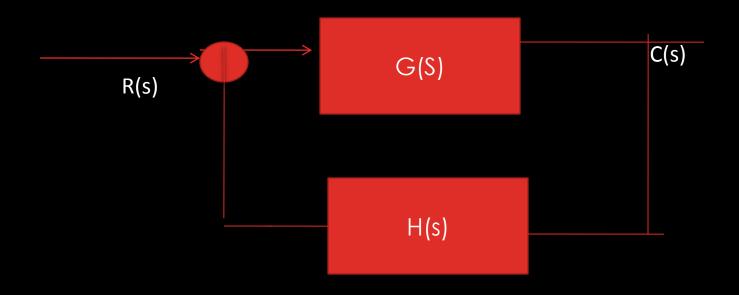
If process is change as

Open-loop system

Closed-loop system

CONTINUE

In the limit, for small incremental changes, last formula is


SENSITIVITY

- Measure of the effectiveness of feedback in reducing the influence of the variations (changing environment) on system performance.
- It gives an assessment of the system performance as affected due to parameter variation.

EFFECT OF TRANSFER FUNCTION PARAMETER VARIATIONS IN AN OPEN LOOP CONTROL SYSTEM

EFFECT OF TRANSFER FUNCTION PARAMETER VARIATIONS IN AN CLOSED LOOP CONTROL SYSTEM

$$M(s) = \frac{C(s)}{R(S)} = \frac{G(s)}{1 + G(S)H(S)} \rightarrow (1)$$

$$C(S) + \Delta C(S) = \frac{[G(S) + \Delta G(S)]}{1 + [G(S)H(S) + \Delta G(S)H(S)]}R(S)$$

$$= \frac{[G(S)R(S)]}{1 + [G(S)H(S) + \Delta G(S)H(S)]} + \frac{\Delta G(S)R(S)}{1 + [G(S)H(S) + \Delta G(S)H(S)]}$$

 $NEGLECT \Delta G(S) AS \Delta G(S) << G(S)$

 $\therefore \Delta G(S)H(S)$ CAN BE NEGLECTED

$$= \frac{[G(S)R(S)]}{1+[G(S)H(S)]} + \frac{\Delta G(S)R(S)}{1+[G(S)H(S)]}$$

PUT EQN.1 EQN.3

$$\Delta C(S) = \frac{\Delta G(S)}{1 + G(S)H(S)} R(S)$$

1+ G(S) H(S) IN A CLOSED LOOP. -O/P VARIATIONS MORE SENSITIVE IN OPEN LOOP SYSTEM • SENSITIVITY OF OVERALL TRANSFER FUNCTION M(s) W.R.T. FWD PATH T.F. G(s)

$$S_G^M = \frac{\partial M(S)/M(s)}{\partial G(S)/G(s)}$$

OPEN LOOP CONTROLSYSTEM

$$M(S) = \frac{C(S)}{R(S)} = G(S)$$

$$\frac{M(S)}{G(S)} = 1$$

DIFFERENTIATING M(s) W.R.T.G(s)

$$S_G^M = \frac{G(S)}{M(S)} \cdot \frac{\partial M(S)}{\partial G(S)} = 1$$

 SENSITIVITY OF OVERALL TRANSFER FUNCTION M(s) W.R.T. FWD PATH T.F. G(s)

CLOSED LOOP CONTROLSYSTEM $M(S) = \frac{C(S)}{R(S)} = \frac{G(s)}{1 + G(s)H(s)}$ DIFFERENTIATING M(s) W.R.T.G(s) $\frac{\partial M(S)}{\partial G(S)} = \frac{[1 + G(S)H(S)] - G(S)H(S)}{[1 + G(S)H(S)]^2}$ $\frac{\partial M(S)}{\partial G(S)} = \frac{1}{[1 + G(S)H(S)]^2}$ $\therefore S_G^M = \frac{G(S)}{M(S)} \cdot \frac{\partial M(S)}{\partial G(S)} = \frac{1}{1 + G(S)H(S)}$

SENSITIVITY OF OVERALL TRANSFER FUNCTION W.R.T. FWD PATH T.F. IN CASE OF CLOSED LOOP SYSTEM IS REDUCED BY 1+G(S)H(S) AS COMPARED TO

OPEN LOOP SYSTEM

$$M(S) = \frac{G(S)}{1 + G(s)H(s)}$$

DIFFERENTIATING W.R.T.G(S)

EXAMPLE OF SENSITIVITY

Feedback amplifier

 Goal: Reduce the sensitivity to parameters variation, that is enhance the robustness to change in amplifier gain.