
STYLES OF MODELING
DSD

AJIT KUMAR

STYLES OF MODELING

They are of 3 types:
1. Structural modeling
2. Data flow modeling
3. Behavorial modeling

1. STRUCTURAL MODELING

 An entity is modeled as a set of components connected
by signals,i.e,as a netlist.

 The behavior of the entity is not explicitly apparent
from it model.

 The component instantiation statement is primary
mechanism used for describing such model of an entity.

a. Component declaration
b. Component instantiation

a. COMPONENT DECLARATION
 Component declaration declares the name and the interface of a

component. The interface specifies the mode and the type of ports.

 SYNTAX:
Component component_name [is]
Port (input _name : IN data_type; Output_name : OUT

data_type);
End component [component_name];

 Eg.
Component AND1
Port(x,y : IN bits; z: OUT bits);
End component AND1;

b. COMPONENT INSTANTIATION

 Defines a subcomponent of the entity in which it
appears. It associates signals in the entity with the
ports of that subcomponent.

 SYNTAX:
Component_label : component_name PORTMAP (
associated values);

 Eg.
A 1 : AND1 PORTMAP (x,y,z);

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY HA IS
PORT (a, b : IN bit;

s, c : OUT bit);
END HA;

ARCHITECTURE HA1 OF HA IS
COMPONENT XOR1
PORT (x, y : IN BIT ;

Z : OUT BIT);
END COMPONENT XOR1;

Eg. Write a structural VHDL code for Half adder.

COMPONENT AND1
PORT (l, m : IN BIT;
N: OUT BIT);
END COMPONENT AND1;
BEGIN

X1: XOR1 PORTMAP (a, b, s);
A1: AND1 PORTMAP (a, b, c);

END HA;

2. DATAFLOW MODELING
Shows the flow of information through the entity, which is expressed using
concurrent signal assignment statements and block statements.

By using following statements:
i. 1.Operators or signal assignment statements.
ii. 2.WHEN ELSE statement
iii. 3.WITH/SELECT/WHEN
iv. 4.BLOCK statements- A. Simple block
v. B. Nested block
vi. 5. GUARDED BLOCK statement
vii. 6.GENERATE statement
viii. 7.GENERIC statement
ix. 8.UNAFFECTED value

i. Operators or signal assignment statements.

SYNTAX:

ARCHITECTURE architecture_name OF entity_name IS
BEGIN
Signal assignment statements;
END architecture_name;

Eg.OR gate

ARCHITECTURE or1 OF or IS
BEGIN
Z<=a OR b;
END or1;

ii. WHEN/ELSE statement
Conditional signal assignment statement ,also called Simple WHEN.--based on

condition

SYNTAX:
Target_signal<=

[waveform_elements WHEN condition ELSE]
[waveform_elements WHEN condition ELSE]

…………………
waveform_elements [WHEN condition] ;

Eg.Half Adder
Y<= “00” WHEN x= “00” ELSE

“10” WHEN x= “01” ELSE
“10” WHEN x= “10” ELSE
“01” WHEN OTHERS;

iii. WITH/SELECT/WHEN statements
Selected signal assignment statement --based on the value of select expression.

SYNTAX:
WITH expression SELECT
Target_signal<= waveform_elements WHEN choices;

waveform_elements WHEN choices;
………………………
waveform_elements WHEN choices;

Eg.Half Adder
WITH x SELECT
y<= “00” WHEN “00”;

“10” WHEN “01”;
“10” WHEN “10”;
“01” WHEN “11”;

iv. BLOCK Statements
A block statement is a concurrent
statement. It can be used for three
major purpose:

1. To disable signal drivers by using
GUARDS.

2. To limit scope of declarations,
including signal declarations.

3. To represent a portion of a design.

2 types of block statements:
A. SIMPLE block
B. NESTED block

A. SIMPLE BLOCK
SYNTAX:
Label: BLOCK [IS]

[declarative part]
BEGIN
(concurrent part)

END BLOCK label;

Eg.
B1: BLOCK

BEGIN
Q<= d;

END BLOCK B1;

B. NESTED BLOCK
Label1:BLOCK [IS]

[declarative part of 1st block]
BEGIN

Label2:BLOCK
[declarative part of 2nd

block]
BEGIN

(concurrent
statements of 2nd block)

END BLOCK label2;
(more concurrent statements of

1st block)
END BLOCK label1;

Eg.
B1: BLOCK
BEGIN

B2:BLOCK
BEGIN
Y<= a + ‘1’;
END BLOCK B2;

Z<=y + ‘1’;
END BLOCK B1;

v. GUARDED BLOCK statements
The control enters this block

only if the guarded-expressions
in the block is true. i.e the block
is guarded or protected.

SYNTAX:
Label: BLOCK(GUARDED

expression)[IS]
[declarative part]
BEGIN
Concurrent statement
END BLOCK [label];

Eg.
B1: BLOCK(clk=’1’)
BEGIN
Q<= GUARDED d;
END BLOCK B1;

vi. GENERATE statements
1. FOR GENERATION Scheme
A. Concurrent statements can be

replicated a predefined number
of times.

SYNTAX:
Generate_label: FOR

generate_identifier IN
discrete_range GENERATE

[block declarations
BEGIN]
Concurrent statements
END GENERATE [Generate_label];

Eg.
G1: FOR i IN (3 DOWNTO 0) GENERATE
Output(i)<=’1’ WHEN a(i)=’1’
ELSE ‘0’;
END GENERATE G1;

2. IF GENERATION scheme
Concurrent statements can be

conditionally replicated.

SYNTAX:

Generate_label: IF expression
GENERATE

[block declarations
BEGIN]
Concurrent statements
END GENERATE [Generate_label];

Eg.
G1: IF a>b GENERATE
Out<=’1’;
END GENERATE G1;

vii. GENERIC statement
 Static parameter can be varies using Genarics.
 Generic shows how certain types of information can be passed into

entity .
 Examples of such information are rise and fall delays and the size

of the interface ports.This is accomplished using Generics.
 Generics of an entity are declared along with its ports in the entity

declarations but can be used globally of all architecture.

 SYNTAX:

GENERIC (parameter_name: parameter_type:=parameter_value);

Eg.
GENERIC (n: INTEGER:=8);

Eg.Nand gate
ENTITY nand_gate IS
GENERIC (m:INTEGER:=2);
PORT(a :IN BIT_VECTOR(m DOWNTO 0);

Z:OUT BIT);
END nand_gate;

Note: Generics can be specified as a globally static expression in one of the
following:

Entity declaration, Component declaration, Component instantiation,
Configuration specification, Configuration declaration.

viii. UNAFFECTED value
 It is possible to assign a value of unaffected to a signal assignment

statement.
 Such an assignment causes no changes to the driver for the target signal.

SYNTAX:
WITH identifier SELECT
Signal_assignment WHEN value;
………………………..
UNAFFECTED WHEN OTHERS;

Eg.
WITH i SELECT
Output<= “0001” WHEN apply;

“0010” WHEN waits;
“0100” WHEN reset;
UNAFFECTED WHEN OTHERS;

3. BEHAVORIAL MODELING
In this modeling style, the behavior of the entity is expressed using sequentially executed,
procedural code, which is very similar in syntax and semantics to that of high-level
programming language like C, Pascal.

i. 1. ENTITY DECLARATION
ii. 2. ARCHITECTURE BODY
iii. 3. PROCESS STATEMENT
iv. 4. VARIABLE ASSIGNMENT STATEMENT
v. 5. SIGNAL ASSIGNMENT STATEMENT
vi. 6. WAIT
vii. 7. IF/ THEN/ELSE
viii. 8. CASE/WHEN
ix. 9. CASE/WHEN WITH NULL
x. 10. LOOP
xi. 11.EXIT
xii. 12.NEXT

i. ENTITY DECLARATION
An entity declaration describes the external interface of the entity i.e.it
gives the black-box view.

SYNTAX:
ENTITY entity_name IS
[GENERIC (list of generics and their types);]
[PORT (list of interface port names and their types)
[Entity-declaration]
[BEGIN
Entity-statements]
END [ENTITY] [entity_name];

e.g.
ENTITY AOI IS
PORT (a, b, c, d: IN bit; z: OUT bit);
END [ENTITY] [AOI];

ii. ARCHITECTURE BODY
 An architecture body describes the internal

view of an entity. It describes the
functionality or the structure of the entity.

SYNTAX:
ARCHITECTURE architecture-name OF entity-

name IS
[Architecture-item-declaration]
BEGIN
Concurrent statements; these are
Process-statement
Block-statement
Concurrent-procedure-call-statement
Concurrent-assertion statement
Component-instantiation-statement
Generate-statement
END [ARCHITECTURE] [architecture-name];

e.g.
ARCHITECTURE AOI_sequential OF AOI IS
BEGIN
PROCESS (a, b, c, d)
VARAIBLE temp1, temp: BIT;
BEGIN
Temp1:=a AND b;
Temp2:=c AND d;
Temp1:=temp1 OR temp2;
Z<=NOT temp1;
END PROCESS;
END AOI_sequential;

iii. PROCESS STATEMENT
A process statement contains sequential statements that describe the

functionality of a portion of an entity in sequential terms.
SYNTAX:
[Process-label] PROCESS [(sensitivity-list)] [IS]
[Process-item-declarations]

BEGIN
Sequential-statements; these are
Variable-assignment statement ;Signal assignment statement; Wait-

statement; If-statement; Case-statement; Loop-statement; Null-
statement; Next-statement; Assertion-statement; Report-statement;
Procedure-call-statement; Return-statement

END PROCESS [process-label];

iv. VARIABLE ASSIGNMENT STATEMENT
Variable can be declared and used inside a process statement.

SYNTAX:
VARAIBLE-object: = expression;

e.g.
PROCESS (A)
VARIABLE k: integer: =-1;
BEGIN
K: =k+1;
END PROCESS;

v. SIGNAL ASSIGNMENT STATEMENT

Signals are assigned values using a signal assignment.
SYNTAX:
SIGNAL-object<= expression [AFTER delay-value]

e.g.
counter<=counter+”0010” AFTER 6ns;

vi. WAIT STATEMENT
 Wait statement provides an

alternative way to suspend the
execution of a process.

 WAIT are of 3 types:
 WAIT ON
 WAIT UNTIL
 WAIT FOR

 SYNTAX:
 WAIT ON sensitivity-list;
 WAIT UNTIL Boolean-expression;
 WAIT FOR time-expression;

e.g.
WAIT ON a, b, c;
WAIT UNTIL a=b;
WAIT FOR 10ns;

Note: they may also be combined in single
wait statement.

SYNTAX:
WAIT ON sensitivity-list UNTIL Boolean-
expression FOR time-expression;

e.g.
WAIT ON a, b, c UNTIL a=b FOR 10ns;

vii. IF STATEMENT(IF/THEN/ELSE)
 An If statement selects a sequence

of statements for execution based
on the value of a condition.

SYNTAX:
IF boolean-expression THEN
Sequential-statements
[ELSIF boolean-expression THEN
Sequential –statements]
[ELSE
Sequential-statements]
END IF;

e.g.
IF a THEN
Out1<=”00”;

ELSIF b THEN
Out1<=”01”;
ELSE
Out1<=”10”;
END IF;

viii. CASE STATEMENT (CASE/WHEN)
 The case statement selects one of the

branches for execution based on the
value of the expression.

SYNTAX:

CASE expression IS
WHEN choices=> sequential-statements
WHEN choices=>sequential-statements
…………….
[WHEN OTHERS=>sequential –statements]
END CASE;

e.g.
CASE day IS
WHEN mon=> pocket-money: =6;
WHEN tue|wed=>pocket-money: =7;
WHEN fri TO sat ->pocket-money: =8;

WHEN OTHERS=>pocket-money: =0;
END CASE;

ix. NULL STATEMENT
 The statement NULL is a sequential statement that does

not cause any action to take place; execution continues
with the next statement.

CASE/WHEN with NULL
SYNTAX:
CASE identifier IS
WHEN value=> assignment;
………………..
WHEN value=> NULL;
END CASE;

x. LOOP STATEMENT

 A loop statement is used
to iterate through a set
sequential statements.

3 types of LOOP
statements:

A. SIMPLE LOOP
B. FOR LOOP
C. WHILE LOOP

A. SIMPLE LOOP
SYNTAX:

[Loop-label:] iteration-scheme LOOP
Sequential-statements
END LOOP [loop-label];

e.g.
L1: LOOP

a<=a+’1’;
b<=a+ ’1’;

END LOOP L1;

B. FOR LOOP

SYNTAX:
[loop-label:] FOR identifier IN

range LOOP
Sequential statements
END LOOP [loop-label];

e.g.
FOR number IN 2 TO N LOOP
Factorial: =factorial* number;
END LOOP;

C. WHILE LOOP

SYNTAX:
[loop-label:] WHILE condition LOOP
Sequential statements
END LOOP [loop-label];

e.g.
WHILE A<5 LOOP
X (i) <=A (i) +’1’;
END LOOP;

xi. EXIT STATEMENT
 The exit statement is a sequential statement that can be used only inside a loop.
 It causes execution to jump out of the innermost loop or the loop whose label is

specified.

SYNTAX:

EXIT [loop-label] [WHEN condition];
e.g.

L1: LOOP
J: =j+5;
IF J> 50 THEN

EXIT L1;
END IF;

END LOOP L1;

xii. NEXT STATEMENT
 The next statement is also a sequential statement that can be used only inside a

loop.

SYNTAX:
NEXT [loop-label] [WHEN condition];

e.g.
L1: LOOP

IF J< 50 THEN
J:=j+5;
ELSIF J=50 THEN

NEXT;
ELSE

NULL;
END IF;
END LOOP L1;

Assertion Statement

 If the value of Boolean expression is false, the
report message is printed along with severity level.

 Syntax
Assert boolean_expression
[report string_expression];
[severity expression];

