
VHDL BASIC
ELEMENTS

INTRODUCTION

VHDL Basic elements

Identifiers
 Basic identifiers
 Extended identifiers
Data Objects
 Constant
 Variable
 Signal
 File
Data Types
 Scalar
 Composite
 Access
 File type

Identifiers
 Can be defined as the identification of any data type

Basic identifier: is composed of sequence of ne or
more character.

1. It must begin with alphabetic character (a-z or
A-Z).

2. It is case insensitive.
3. It can contain alphanumeric and underscores.
4. It cannot contain spaces.
5. No two consecutive underscores are allowed.
6. No VHDL keyword allowed.

Identifiers
 Extended identifiers: is a sequence of characters

written between two backslashes. (/ ……. /)
1. Any character can be allowed like @,%,$,#,!.
2. Case sensitive .
3. It may contain spaces and consecutive

undescores.
4. VHDL keywords are allowed.

Data Objects
 A data object holds a value of a specific type.

eg. Variable count: integer
Eg. Constant count: integer

Constant: this type f object can hold a single value.
The value cannot be changed during the time of
simulation. Eg. Constant count: integer:=5
(Deferred constant: constant without initialized
value)

 Variable: this type of object an hold different
values at different times. It is declared within a
block, process, procedure or function.

eg. Variable count: integer
eg. Variable sum: integer range 0 to 100:=10

 Signal: It holds a list of values, that include the
current value of the signal, and set of possible
future values that are to be appeared on the
signal.
eg. Signal clock: bit

Signal clock: bit:=10ns

Data Objects

 File: this class contains a sequence of values.
Values can be read or written to the file using read
and write procedures.

 Eg. File math : text open read_mode is
“/usr/home/add.doc.

Data Objects

DATA TYPES

 Every data object in VHDL can hold a value that
belongs to set of values. This set of values is
specified by using type declarations.

Categorized into 4 major categories:
 Scalar types
 Composite types
 Access types
 File types

a.SCALAR TYPES
 Values belonging to these types appear in sequential

order. i.e. these types are ordered.
i. Enumeration: An enumeration type declaration defines

a type that has a set of user-defined values consisting
of identifiers and character literals.

 SYNTAX:
TYPE type_name IS ()

 E.g.
TYPE MVL IS (‘u’,’0’,’1’,’z’);

ii. Integer: These values fall within a specified integer
range.

 SYNTAX:
TYPE type_name IS range value;
 E.g.
TYPE INDEX IS range 0 to15;

iii. Physical: Contains values that represent
measurement of physical quantity like, time, length,
volume, or current.

 SYNTAX:
TYPE type_name IS range value;
 E.g.
TYPE CURRENT IS range 0 to 1e9;
Units nA;

iv. Floating point: Has set of values in a given range
of real numbers.

 SYNTAX:
TYPE type_name IS range value;

 E.g.
TYPE itl_voltage IS range -5.5 to -1.4;

b. COMPOSITE TYPES
 Composite types represent a collection of values.

i. Array type: An object of an array type consists of that
have same type of elements.

 SYNTAX:
TYPE type_name IS ARRAY values;

 E.g.
 TYPE address_word IS ARRAY (0 to 63) of bit;

ii. Record type
 It consists of elements of different data type.
 SYNTAX:
TYPE type_name IS RECORD
Values;
--;

END RECORD;

 E.g.
TYPE birthday IS RECORD
Day: integer range (0 to 31);
Month: month_1;
END RECORD;

c. ACCESS TYPES
Values belonging to an access type are pointers to a

dynamically allocated object of some other type.

 E.g. TYPE PTR IS ACCESS MODULE;
TYPE FIFO IS ARRAY (0 to 63, 0 to 7) of BIT;

d. FILE TYPES

Objects of file types represent files in host environment.
 SYNTAX:
TYPE file_type_name IS FILE OF type_name;

 E.g.
TYPE VECTORS IS FILE OF BIT_VECTOR;
TYPE NAME IS FILE OF STRING;

Note: Data types are also classified as

 Pre-defined data types
 User defined data types

User –defined data types
Integer
Real
Enumerated type
Array
Record

Pre-defined data
types.
Bit
Boolean
Integer
Real
Natural
Physical
Character
Signed
Unsigned

Data Types
Predefined data types.
 bit values: '0', '1'
 boolean values: TRUE, FALSE
 integer values: -(231) to +(231 - 1)

 std_logic values: 'U','X','1','0','Z','W','H','L','-'
U' = uninitialized
'X' = unknown
'W' = weak 'X‘
'Z' = floating
'H'/'L' = weak '1'/'0‘
'-' = don't care

 Std_logic_vector (n downto 0);
 Std_logic_vector (0 upto n);

OPERATORS

 Adding operator
 Multiplication operators
 Logical operators
 Relational or comparision operators
 Shift operators
 Miscellaneous operators

1. Adding operations:

 These are + - &

 Where & is the concatenation operator ,it can used
for array type or element type.

 Eg.
X=’1’ & “ 1011”
Results in “11011”

2. Multiplication operators:
 These are / * mod rem

 Suppose mod A/B=Where mod operator gives
remainder of A/B ,with sign of B value.
Eg. 15 mod -7 =-1

 Suppose rem A/B= where rem operator gives
Remainder of A/B with sign of A value.
Eg. 15 rem -7 =1

3. Logical operators

 The seven logical operators are :
AND, OR, NOT, NAND, NOR, XOR, XNOR.
Eg. A And B;

 Note: A nand B nand C is illegal..This problem can
be avoided by using parenthesis.
i.e (A nand B) nand C

4. Relational or comparison operators
 These are:

= /= < < = > >=

 Eg.
mvl’(‘u’)>mvl’(‘z’);
“VHDL” < “VHDL 92”

5. Shift operators
These are:

 Sll – shift left logical
 Srl – shift right logical
 Sla –shift left arithmatic
 Sra –shift right arithmetic
 Rol –rotate left
 Ror –rotate right

Example
For x=”1100”

 Sll 2 is “0000” --vacated bits filled with ‘0’
 Srl 3 is “0001” --vacated bits filled with ‘0’
 Sla 2 is “0000” -- filled with the rightmost bit
 Sra 2 is “1111” -- filled with the leftmost bit
 Rol 2 is “0011” --rotate left
 Ror 3 is “1001” --rotate right

 Sll -2 is “0011” -- srl 2 operation performed
 Srl -3 is “0000” -- sll 3 operation performed
 Sla -2 is “1111” -- sra 2 operation performed
 Sra -2 is “0000” -- sla 2 operation performed
 Rol -2 is “0011” -- ror 2 operation performed
 Ror -3 is “0110” -- rol 3 operation performed

6. Miscellaneous operators
These are: Abs **

 The abs (absolute) operator is defined for any numeric type.

 The **(exponentiation) operator is defined for left operand
to be of integer or floating point type,and for right
operand(i.e the exponent) to be of integer type only.

 Note: the NOT operator has same precedence as above
two operators.

SUBTYPE

 A subtype is a type with a constraint.
 The constraint specifies the subset of values for the

subtype. This type is called the base type of subtype.
 SYNTAX:

SUBTYPE type_name IS data_type;

 Eg.
SUBTYPE My_integer IS integer range 48 to 145;

Behavior model(Sequential Statements)
 wait statement
 assertion statement
 report statement
 signal assignment statement
 variable assignment statement
 procedure call statement
 if statement
 case statement
 loop statement
 next statement
 exit statement
 return statement
 null statement

