
VHDL BASIC
ELEMENTS

INTRODUCTION

VHDL Basic elements

Identifiers
 Basic identifiers
 Extended identifiers
Data Objects
 Constant
 Variable
 Signal
 File
Data Types
 Scalar
 Composite
 Access
 File type

Identifiers
 Can be defined as the identification of any data type

Basic identifier: is composed of sequence of ne or
more character.

1. It must begin with alphabetic character (a-z or
A-Z).

2. It is case insensitive.
3. It can contain alphanumeric and underscores.
4. It cannot contain spaces.
5. No two consecutive underscores are allowed.
6. No VHDL keyword allowed.

Identifiers
 Extended identifiers: is a sequence of characters

written between two backslashes. (/ ……. /)
1. Any character can be allowed like @,%,$,#,!.
2. Case sensitive .
3. It may contain spaces and consecutive

undescores.
4. VHDL keywords are allowed.

Data Objects
 A data object holds a value of a specific type.

eg. Variable count: integer
Eg. Constant count: integer

Constant: this type f object can hold a single value.
The value cannot be changed during the time of
simulation. Eg. Constant count: integer:=5
(Deferred constant: constant without initialized
value)

 Variable: this type of object an hold different
values at different times. It is declared within a
block, process, procedure or function.

eg. Variable count: integer
eg. Variable sum: integer range 0 to 100:=10

 Signal: It holds a list of values, that include the
current value of the signal, and set of possible
future values that are to be appeared on the
signal.
eg. Signal clock: bit

Signal clock: bit:=10ns

Data Objects

 File: this class contains a sequence of values.
Values can be read or written to the file using read
and write procedures.

 Eg. File math : text open read_mode is
“/usr/home/add.doc.

Data Objects

DATA TYPES

 Every data object in VHDL can hold a value that
belongs to set of values. This set of values is
specified by using type declarations.

Categorized into 4 major categories:
 Scalar types
 Composite types
 Access types
 File types

a.SCALAR TYPES
 Values belonging to these types appear in sequential

order. i.e. these types are ordered.
i. Enumeration: An enumeration type declaration defines

a type that has a set of user-defined values consisting
of identifiers and character literals.

 SYNTAX:
TYPE type_name IS ()

 E.g.
TYPE MVL IS (‘u’,’0’,’1’,’z’);

ii. Integer: These values fall within a specified integer
range.

 SYNTAX:
TYPE type_name IS range value;
 E.g.
TYPE INDEX IS range 0 to15;

iii. Physical: Contains values that represent
measurement of physical quantity like, time, length,
volume, or current.

 SYNTAX:
TYPE type_name IS range value;
 E.g.
TYPE CURRENT IS range 0 to 1e9;
Units nA;

iv. Floating point: Has set of values in a given range
of real numbers.

 SYNTAX:
TYPE type_name IS range value;

 E.g.
TYPE itl_voltage IS range -5.5 to -1.4;

b. COMPOSITE TYPES
 Composite types represent a collection of values.

i. Array type: An object of an array type consists of that
have same type of elements.

 SYNTAX:
TYPE type_name IS ARRAY values;

 E.g.
 TYPE address_word IS ARRAY (0 to 63) of bit;

ii. Record type
 It consists of elements of different data type.
 SYNTAX:
TYPE type_name IS RECORD
Values;
--;

END RECORD;

 E.g.
TYPE birthday IS RECORD
Day: integer range (0 to 31);
Month: month_1;
END RECORD;

c. ACCESS TYPES
Values belonging to an access type are pointers to a

dynamically allocated object of some other type.

 E.g. TYPE PTR IS ACCESS MODULE;
TYPE FIFO IS ARRAY (0 to 63, 0 to 7) of BIT;

d. FILE TYPES

Objects of file types represent files in host environment.
 SYNTAX:
TYPE file_type_name IS FILE OF type_name;

 E.g.
TYPE VECTORS IS FILE OF BIT_VECTOR;
TYPE NAME IS FILE OF STRING;

Note: Data types are also classified as

 Pre-defined data types
 User defined data types

User –defined data types
Integer
Real
Enumerated type
Array
Record

Pre-defined data
types.
Bit
Boolean
Integer
Real
Natural
Physical
Character
Signed
Unsigned

Data Types
Predefined data types.
 bit values: '0', '1'
 boolean values: TRUE, FALSE
 integer values: -(231) to +(231 - 1)

 std_logic values: 'U','X','1','0','Z','W','H','L','-'
U' = uninitialized
'X' = unknown
'W' = weak 'X‘
'Z' = floating
'H'/'L' = weak '1'/'0‘
'-' = don't care

 Std_logic_vector (n downto 0);
 Std_logic_vector (0 upto n);

OPERATORS

 Adding operator
 Multiplication operators
 Logical operators
 Relational or comparision operators
 Shift operators
 Miscellaneous operators

1. Adding operations:

 These are + - &

 Where & is the concatenation operator ,it can used
for array type or element type.

 Eg.
X=’1’ & “ 1011”
Results in “11011”

2. Multiplication operators:
 These are / * mod rem

 Suppose mod A/B=Where mod operator gives
remainder of A/B ,with sign of B value.
Eg. 15 mod -7 =-1

 Suppose rem A/B= where rem operator gives
Remainder of A/B with sign of A value.
Eg. 15 rem -7 =1

3. Logical operators

 The seven logical operators are :
AND, OR, NOT, NAND, NOR, XOR, XNOR.
Eg. A And B;

 Note: A nand B nand C is illegal..This problem can
be avoided by using parenthesis.
i.e (A nand B) nand C

4. Relational or comparison operators
 These are:

= /= < < = > >=

 Eg.
mvl’(‘u’)>mvl’(‘z’);
“VHDL” < “VHDL 92”

5. Shift operators
These are:

 Sll – shift left logical
 Srl – shift right logical
 Sla –shift left arithmatic
 Sra –shift right arithmetic
 Rol –rotate left
 Ror –rotate right

Example
For x=”1100”

 Sll 2 is “0000” --vacated bits filled with ‘0’
 Srl 3 is “0001” --vacated bits filled with ‘0’
 Sla 2 is “0000” -- filled with the rightmost bit
 Sra 2 is “1111” -- filled with the leftmost bit
 Rol 2 is “0011” --rotate left
 Ror 3 is “1001” --rotate right

 Sll -2 is “0011” -- srl 2 operation performed
 Srl -3 is “0000” -- sll 3 operation performed
 Sla -2 is “1111” -- sra 2 operation performed
 Sra -2 is “0000” -- sla 2 operation performed
 Rol -2 is “0011” -- ror 2 operation performed
 Ror -3 is “0110” -- rol 3 operation performed

6. Miscellaneous operators
These are: Abs **

 The abs (absolute) operator is defined for any numeric type.

 The **(exponentiation) operator is defined for left operand
to be of integer or floating point type,and for right
operand(i.e the exponent) to be of integer type only.

 Note: the NOT operator has same precedence as above
two operators.

SUBTYPE

 A subtype is a type with a constraint.
 The constraint specifies the subset of values for the

subtype. This type is called the base type of subtype.
 SYNTAX:

SUBTYPE type_name IS data_type;

 Eg.
SUBTYPE My_integer IS integer range 48 to 145;

Behavior model(Sequential Statements)
 wait statement
 assertion statement
 report statement
 signal assignment statement
 variable assignment statement
 procedure call statement
 if statement
 case statement
 loop statement
 next statement
 exit statement
 return statement
 null statement

