VHDL BASIC BEMENIS

INIRODUCIION

VHDLBasic elements

Identifiers
\square Basic identifiers

- Extended identifiers

Data Objects

- Constant
- Variable
\square Signal
\square File
Data Types
\square Scalar
\square Composite
- Access
\square File type

Identifiers

\square Can be defined as the identification of any data type
Basic identifier: is composed of sequence of ne or more character.

1. It must begin with alphabetic character (a-z or A-Z).
2. It is case insensitive.
3. It can contain alphanumeric and underscores
4. It carnot contain spaces.
5. No two conseative underscores are allowed.
6. No VHDLkeyword allowed.

Identifiers

\square Extended identifiers: is a sequence of characters written betweentwo backslashes (//)

1. Any character can be allowed like @,\%,\$,\#,!.
2. Case sensitive .
3. It may contain spaces and conseculive undescores.
4. VHDLkeywords are allowed.

Data Objects

\square A data object holdsa value of a spedific type. eg. Variable count: integer Eg. Constant count: integer

Constant: this type f object can hold a single value. The value carnot be changed during the time of simulation. Eg. Constant count: integer:=5
(Deferred constant: constant without initialized value)

Data Objects

\square Variable: this type of object an hold different values at different times It is dedared withina block, process, procedure or function.
eg. Variable count: integer
eg. Variable sum integer range 0 to $100:=10$
\square Signal: It holds a list of values, that indude the arrent value of the signal, and set of possible future values that are to be appeared on the signal.
eg. Signal dock: bit Signal dock: bit:=10ns

Data Objects

\square File: this dass containsa sequence of values. Values can be read or written to the file using read and write procedures
\square Eg. File math : text open read_mode is "/ usr/ home/ add.doc.

DATA TYPES

\square Every data object in VHDL can hold a value that belongs to set of values This set of values is spedified by using type dedarations.
Categorized into 4 major categories.
\square Scalar types
\square Composite types
\square Accesstypes
\square File types

a.SCALAR TYPES

\square Values belonging to these types appear in sequential order. i.e. these types are ordered.
i. Enumeration: An enumerationtype dedaration defines a type that has a set of user-defined values consisting of identifiers and character literals.
\square SYNTAX:
TYPEtype_name IS()
\square Eg.
TYPEMVLIS('u','0','1','z');
ii. Integer: These values fall withina spedified integer range.

- SYNTAX:

TYFEtype_name ISrange value;
\square Eg.
TYPEINDEX ISrange 0 to15;
iii. Physical: Contains values that represent measurement of physical quantity like, time, length, volume, or arrent.
\square SYNTAX:
TYFEtype_name ISrange value;
\square Eg.
TYPECURRENT ISrange 0 to 1e9;
UnitsnA;

iv. Roating point Has set of values in a given range of real numbers.

\square SYNTAX:
TYFEtype_name ISrange value;

\square Eg.
TYPE itt_voltage ISrange -5.5 to -1.4;

b. COMPOSTIETYPES

\square Composite types represent a collection of values.
i. Array type: An object of an array type consists of that have same type of elements.
\square SYNTAX:
TYFEtype_name ISARRAY values,
\square Eg.
\square TYPEaddress word ISARRAY (0 to 63) of bit;

ii. Record type

\square It consists of elements of different data type.
\square SYNTAX:
TYPEtype_name ISRECORD
Values,
;
ENDRECORD,
\square Eg.
TYFEbirthday ISRECORD
Day: integer range (0 to 31);
Month: month_1;
ENDRECORD,

c. ACCESS TYPES

Values belonging to an access type are pointers to a dynamically allocated object of some other type.

- Eg. TYPEPTR ISACCESSMODULE; TYPEFIFO ISARRAY (0 to 63, 0 to 7) of BIT;

d. RLE TYPES

Objects of file types represent files in host enviromment.
\square SYNTAX:
TYPEfile_type_name ISFIEOF type_name;
\square Eg.
TYFEVECTORS ISFIEOFBITVECTOR; TYPENAME ISFLEOFSTRING;

Note: Data types are also dassified as

Pre-defined data
types.
Bit
Boolean
Integer
Real
Natural
Physical
Character
Signed
Unsigned

Data Types

Predefined data types.

- bitvalues. '0', ' 1 '
- boolean values: TRUE, FALSE
- integer values. -(231) to $+(231-1)$
- stal logic values 'U','X','1','0','Z,'W','H','L','-'
$\mathrm{U}^{\prime}=$ uninitialized
' X ' = unknown
'W' = weak 'X'
'Z = floating
'H'/ 'L' = weak '1'/ '0'
'-' = don't care
- Std_logic_vector (n downto 0);
- Std_logic_vector (0 upto n);

OPERATORS

\square Adding operator
\square Multiplicationoperators
\square Logical operators
\square Relational or comparision operators
\square Shift operators
\square Miscellaneous operators

1. Adding operations:

\square These are $+-\&$
\square Where \& is the concatenation operator , it can used for array type or element type.
\square Eg.

$$
X={ }^{\prime} 1^{\prime} \&{ }^{\prime} 1011 \text { " }
$$

Results in "11011"

2. Multiplication operators:

\square These are / * mod rem
\square Suppose mod $\mathrm{A} / \mathrm{B}=$ Where mod operator gives remainder of A / B, with sign of B value.
Eg. $15 \bmod -7=-1$
\square Suppose remA/ $\mathrm{B}=$ where remoperator gives Remainder of A / B with sign of A value.
Eg. 15 rem-7 =1

3. Logical operators

\square The seven logical operators are : AND, OR, NOT, NAND, NOR, XOR, XNOR Eg. A And B;
\square Note: A nand B nand C is illegal..This problemcan be avoided by using parenthesis. i.e (A nand B) nand C

4. Relational or comparison operators

These are:

$$
=\quad<\quad<=\quad>\quad>=
$$

Eg.
ml'('u')>ml'('z'); "VHDL" < "VHDL92"

5. Shift operators

These are:

\square Sll - shift left logical
\square Srl - shift right logical
\square Sla -shift left arithmatic
\square Sra -shift right arithmetic
\square Rol -rotate left
\square Ror -rotate right

Example

For $x=" 1100 "$

- Sll 2 is "0000" --vacated bits filled with " 0 '
- Srl 3 is "0001" --vacated bits filled with " 0 '
- Sla 2 is "0000" -- filled with the rightmost bit
- Sra 2 is " 1111 " -- filled with the leftrost bit
- Rol 2 is "0011" --rotate left
- Ror 3 is " 1001 " --rotate right
- Sll -2 is "0011" -- sll 2 operation performed
- Srl -3 is "0000" -- sll 3 operation performed
- Sla -2 is "1111" -- sra 2 operation performed
- Sra -2 is "0000" -- sa 2 operation performed
- Rol -2 is "0011" -- ror 2 operation performed
\square Ror -3 is " 0110 " -- rol 3 operation performed

6. Miscellaneous operators

These are: Abs **
\square The abs (absolute) operator is defined for any numeric type.
\square The **(exponentiation) operator is defined for left operand to be of integer or floating point type,and for right operand(i.e the exponent) to be of integer type only.
\square Note: the NOT operator has same precedence as above two operators.

SUBTYPE

\square A subtype is a type with a constraint

- The constraint spedifies the subset of values for the subtype. This type is called the base type of subtype.
\square SYNTAX:
SUBTYPEtype_name ISdata_type;
\square Eg.
SUBIYPEMy_integer ISinteger range 48 to 145;

Behavior model(Sequential Statements)

- wait statement
- assertionstatement
- report statement
- signal assignment statement
- variable assignment statement
- procedure call statement
- if statement
- case statement
- loop statement
- next statement
- exit statement
- returnstatement
- null statement

