Tally Circuits

Steering Logic

Complex Steering Logic Example

N Input Tally Circuit: count \# of 1's in the inputs

I_{1}	Zero	One
0	1	0
1	0	1

Conventional Logic for 1 Input Tally Function

Switch Logic Implementation of Tally Function

Steering Logic

Complex Steering Logic Example

Operation of the 1 Input Tally Circuit

Input is $\mathbf{0}$, straight through switches enabled

Steering Logic

Complex Steering Logic Example

Operation of 1 input Tally Circuit
\mathbf{N} inputs, $\mathrm{N}+1$ outputs, count the number of inputs ' 1 '

Input = 1, diagonal switches enabled 11=1 (asserted)

Steering Logic

Complex Steering Logic Example

Extension to the 2-input case

I_{1}	I_{2}	Zero	One	Two
0	0	1	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1

Conventional logic implementation

Steering Logic

Complex Steering Logic Example

Switch Logic Implementation: 2-input Tally Circuit

Cascade the 1-input implementation!

Steering Logic

Complex Steering Logic Example

Operation of 2-input implementation

