

Logic Design Using Multiplexers

A Transmission Gate (T-Gate)

Steering gate.

When A=1, 'In' is "Steered" to 'Out'. [I.e., the T-gate conducts] Thus Out = B when A=1

Out = AB

Symbolic for T-gate:

A is the control input (CI) Normal CI connected to A Bubbled CI connected to

Steering Logic are the circuits that route data inputs to outputs based on the setting of control signals.

- For any combination of the control inputs there must be at least one conducting path from an input to the output. i, e the output node should always be driven from some input.
- There should never be more than one conducting path between the inputs and an output. i.e in that case one path might attempt to drive the output node to logic 1 while another drives to logic 0.

 $\Box = \overline{SI}_0 + SI_1$

5

Design of MUXes using Divide-&-Conquer

- Saw the design of a 2:1 MUX using T-gates, as well as logic gates
- Messy and expensive to design larger MUXes using a flat TT based approach
- A 4:1 MUX can be hierarchically constructed using 2:1 MUXes
- Idea: Divide the selection problem by bits of the select/control variables These inputs should

When $S_0=0$, I_0 , I_2 get selected at the 1st level, i.e., Input w/ 0 in LSB.

When $S_0=1$, I_1 , I_3 (LSB=1) get selected at the 1st level.

If $S_0 = 0$, I_0 , I_2 , become the 0th & 1st inputs to the next level.

At the next level, the I/P order # is determined by the rest of the bits of their index after stripping off the LSB.

Thus the design works as a 4:1 MUX.

8:1 MUX's: Input groupings for a different control variable order

Non-Gate Logic

Introduction

AND-OR-Invert PAL/PLA Generalized Building Blocks Beyond Simple Gates

Kinds of "Non-gate logic":

- switching circuits built from CMOS transmission gates, ROMs
- multiplexer/selecter functions
- decoders
- tri-state and open collector gates
- read-only memories

Voltage Controlled Switches

Logic 1 on gate, Source and Drain connected Normally open switch

Logic 0 on gate, Source and Drain connected Normally closed switch

CMOS Transmission Gate

nMOS transistors good at passing 0's but bad at passing 1's

pMOS transistors good at passing 1's but bad at passing 0's

perfect "transmission" gate places these in parallel:

Steering logic circuit – route data inputs to outputs based on the settings of control signals. Ex) selector fun or mux

Selection Function/Demultiplexer Function with Transmission Gates

Use of Multiplexer/Demultiplexer in Digital Systems

So far, we've only seen point-to-point connections among gates

Mux/Demux used to implement multiple source/multiple destination interconnect

Well-formed Switching Networks

Problem with the Demux implementation: multiple outputs, but only one connected to the input!

The fix: additional logic to drive every output to a known value (steer '0' to Z0 or Z1) Never allow outputs to "float"

• State steering logic and discuss design of any combinational circuit using steering logic.