Steering Logic

The World of Integrated Circuits (LSI/VLSI)

Logic Design Using M ultiplexers

A Transmission Gate (T-Gate)

Steering gate.

When $A=1$, 'In' is "Steered" to 'Out'.
[I.e., the T-gate conducts]
Thus Out =B when $A=1$

Symbolic for T-gate:
A is the control input (CI) Normal Cl connected to A Bubbled Cl connected to

$\bar{A}\} \begin{aligned} & \begin{array}{l}\text { T-gate conducts } \\ \text { when } A=1 .\end{array}\end{aligned}$

Steering Logic are the circuits that route data inputs to outputs based on the setting of control signals.

- For any combination of the control inputs there must be at least one conducting path from an input to the output. i,.e the output node should always be driven from some input.
- There should never be more than one conducting path between the inputs and an output. i.e in that case one path might attempt to drive the output node to logic 1 while another drives to logic 0 .

Reversing the connection of A: A \longrightarrow bubble Cl

T-gate conducts when $\mathrm{A}=0$.
Multiplexer (MUX) Design: A 2:1 MUX.

$Z=I_{0}$ when $\mathrm{S}=0$
$Z=I_{1}$ when $S=1$
$\Longrightarrow Z=\bar{S} I_{0}+S I_{1}$

Design of M UXes using Divide-\&-Conquer

- Saw the design of a 2:1 M UX using T-gates, as well as logic gates
- M essy and expensive to design larger M UXes using a flat TT based approach
- A 4:1 M UX can be hierarchically constructed using 2:1 M UXes
- Idea: Divide the selection problem by bits of the select/control variables

These inputs should
have different lsb or S_{0} values,
 the same Isb or S_{0} values. So further selection needs to be based on the non-Isb bits.

These inputs shoūld have different Isb or S_{0} values, since their sel. is based on S_{0} All other bits should be equal.

When $\mathrm{S}_{0}=0, I_{0}, I_{2}$ get selected at the 1 st level, i.e., Input w/ 0
in LSB.
When $\mathrm{S}_{0}=1, I_{1}, I_{3}(\mathrm{LSB}=1)$ get selected at the 1 st level.
If $S_{0}=0, I_{0}, I_{2}$, become the 0 th $\& 1$ st inputs to the next level.
At the next level, the I/P order \# is determined by the rest of the bits of their index after stripping off the LSB.
Thus Io

strip away for the 2nd level inputs.

Thus the design works as a 4:1 MUX.

Non-Gate Logic

Introduction
AND-OR-Invert
Generalized Building Blocks
Beyond Simple Gates

Kinds of "Non-gate logic":

- switching circuits built from CMOS transmission gates, ROMs
- multiplexer/selecter functions
- decoders
- tri-state and open collector gates
- read-only memories

Steering Logic

Voltage Controlled Switches

Logic 1 on gate,
Source and Drain connected Normally open switch

Steering Logic

CMOS Transmission Gate

nMOS transistors good at passing 0's but bad at passing 1's
pMOS transistors good at passing 1's but bad at passing 0's perfect "transmission" gate places these in parallel:

Steering logic circuit - route data inputs to outputs based on the settings of control signals. Ex) selector fun or mux

Switches

Transistors

Transmission or "Butterfly" Gate

Steering Logic

Selection Function/Demultiplexer Function with Transmission Gates

Selector:
Choose 10 if $\mathrm{S}=0$
Choose I1 if $\mathrm{S}=1$

Steering Logic

Use of Multiplexer/Demultiplexer in Digital Systems

So far, we've only seen point-to-point connections among gates
Mux/Demux used to implement multiple source/multiple destination interconnect

Steering Logic

Well-formed Switching Networks
Problem with the Demux implementation:
multiple outputs, but only one connected to the input!

The fix: additional logic to drive every output to a known value (steer '0' to Z0 or Z1)
Never allow outputs to "float"

Assignment No. 19

- State steering logic and discuss design of any combinational circuit using steering logic.

