Introduction to CMOS VLSI Design

CMOS Transistor Theory

I-V Characteristics

 $\hfill\square$ In Linear region, I_{ds} depends on

- How much charge is in the channel?
- How fast is the charge moving?

MOS devices

CMOS VLSI Design

Channel Charge

MOS structure looks like parallel plate capacitor while operating in inversion

- Gate - oxide - channel

- □ Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain

 $\Box v =$

MOS devices

CMOS VLSI Design

- □ Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $\Box \quad v = \mu E \qquad \qquad \mu \text{ called mobility}$
- **D E** =

MOS devices

CMOS VLSI Design

- □ Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $\Box \quad v = \mu E \qquad \qquad \mu \text{ called mobility}$
- $\Box \quad E = V_{ds}/L$

-t =

☐ Time for carrier to cross channel:

- □ Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $\Box \quad v = \mu E \qquad \qquad \mu \text{ called mobility}$
- $\Box E = V_{ds}/L$
- ☐ Time for carrier to cross channel:

$$-t = L / v$$

nMOS Linear I-V

□ Now we know

- How much charge $Q_{channel}$ is in the channel
- How much time t each carrier takes to cross

 $I_{ds} =$

CMOS VLSI Design

nMOS Linear I-V

Now we know

- How much charge $\boldsymbol{Q}_{\text{channel}}$ is in the channel
- How much time t each carrier takes to cross

MOS devices

CMOS VLSI Design

nMOS Saturation I-V

□ If $V_{gd} < V_t$, channel pinches off near drain - When $V_{ds} > V_{dsat} = V_{gs} - V_t$

Now drain voltage no longer increases current

$$I_{ds} =$$

MOS devices

CMOS VLSI Design

nMOS Saturation I-V

□ If $V_{gd} < V_t$, channel pinches off near drain - When $V_{ds} > V_{dsat} = V_{gs} - V_t$

□ Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$

MOS devices

CMOS VLSI Design

nMOS Saturation I-V

□ If $V_{gd} < V_t$, channel pinches off near drain - When $V_{ds} > V_{dsat} = V_{gs} - V_t$

Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$
$$= \frac{\beta}{2} \left(V_{gs} - V_t \right)^2$$

MOS devices

CMOS VLSI Design

