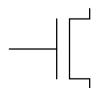
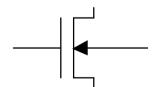
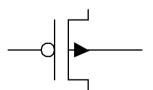
Introduction to CMOS VLSI Design


CMOS Transistor Theory


Outline

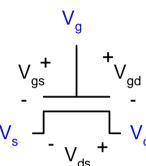
- Introduction
- MOS Capacitor
- nMOS I-V Characteristics
- pMOS I-V Characteristics
- ☐ Gate and Diffusion Capacitance
- Pass Transistors
- □ RC Delay Models


Introduction

- ☐ So far, we have treated transistors as ideal switches
- ☐ An ON transistor passes a finite amount of current
 - Depends on terminal voltages
 - Derive current-voltage (I-V) relationships
- ☐ Transistor gate, source, drain all have capacitance
 - $-I = C (\Delta V/\Delta t) \rightarrow \Delta t = (C/I) \Delta V$
 - Capacitance and current determine speed
- ☐ Also explore what a "degraded level" really means

MOS Capacitor

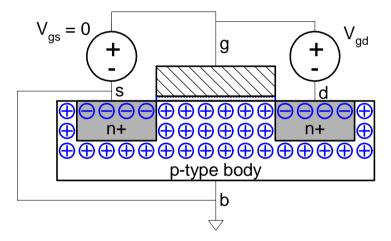
- ☐ Gate and body form MOS capacitor
- Operating modes
 - Accumulation
 - Depletion
 - Inversion


Terminal Voltages

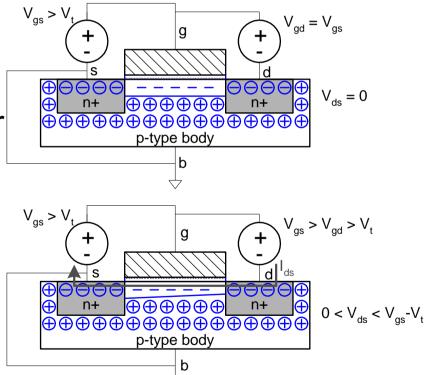
■ Mode of operation depends on V_g, V_d, V_s

$$-V_{gs} = V_g - V_s$$

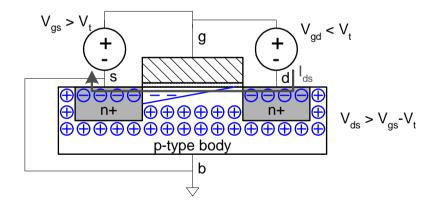
$$-V_{ad} = V_a - V_d$$


$$- V_{ds} = V_{d} - V_{s} = V_{gs} - V_{gd}$$

- ☐ Source and drain are symmetric diffusion terminals
 - By convention, source is terminal at lower voltage
 - Hence $V_{ds} \ge 0$
- □ nMOS body is grounded. First assume source is 0 too.
- ☐ Three regions of operation
 - Cutoff
 - Linear
 - Saturation


nMOS Cutoff

- No channel
- \Box $I_{ds} = 0$


nMOS Linear

- ☐ Channel forms
- Current flows from d to s
 - e⁻ from s to d
- \Box I_{ds} increases with V_{ds}
- ☐ Similar to linear resistor

nMOS Saturation

- ☐ Channel pinches off
- I_{ds} independent of V_{ds}
- We say current saturates
- ☐ Similar to current source

I-V Characteristics

- ☐ In Linear region, I_{ds} depends on
 - How much charge is in the channel?
 - How fast is the charge moving?