CASE STUDY OF AN
EMBEDDED SYSTEM FOR A
SMART CARD

SMART CARD

Smart card is one of the most used embedded
system today. It is used for credit, debit bank card,
e-wallet card, identification card, medical card (for
history and diagnosis details) and card for a
number of new innovative application.

EMBEDDED HARDWARE COMPONEBTS

Microcontroller or ASIP
RAM for temporary variables and Stack

OTP ROM for application codes and RTOS codes for
scheduling the tasks

Flash for storing user data, user address, user
identification codes, card number and expiry date

Timer and interrupt controller

A carrier frequency generating circuit and ASK
modulator

Interfacing circuit for the 10s.

Charge pumps for delivering power to the antenna for
transmission and for the system circuits.

EMBEDDED SOFTWARE COMPONENTS

Boot-up, initialization and OS program
Smart card secure file system

Connection establishment and termination
Communication with the host
Cryptography algorithm

Host authentication

Card authentication

Saving addition parameters or recent new data sent
by the host(ex- balance receipt)

= : /
12.4 CASE STUDY OF AN EMBEDDED SYSTEM FOR A SMART CARD

Section 1.10.3 introduced the smart card system hardware and software. Section 12.4.1 gives the requirements
and functioning of smart card communication system. Section 12.4.2 gives the class diagram. Figure 1.13
showed smart card-system hardware components for a contact-less smart. Sections 12.4.3 and 12.4.4 give the
bardware and software architecture and synchronization model. Section 12.4.5 gives the exemplary codes.

12.4.1 Requirements

Assume a contact-less smart card for bank transactions. Let it not be magnetic. [The earlier card used a
magnetic strip to hold the nonvolatile memory. Nowadays, it is EEPROM or flash that is used to hold nonvolatile
plication data.] Requirements of smart card communication system with a host can be understood through
a requirement-table given in Table 12.4.

;12.4.2 Class Diagram

i
‘Table 12.4 listed the functions and the different tasks. An abstract class is Task_CardCommunication.

‘ffigure 12.17 shows the class diagram of Task_CardCommunication. A cycle of actions and card-host

synchronization in the card leads us to the model Task _CardCommunication for system tasks. Card system

: éommunicates to host for identifying host and authenticating itself to the host. ISR1_Port_lO, ISR2_Port_1O
tation methods of the interfacing

and ISR3_Port_lO are interfaces to the tasks. [A class gives the implemen
' routines.] The task_Appl. task_PW, task_ReadPort, and resetTask are the objects of Task_Appl, Task_PW,
- Task_ReadPort and Task_Reset, respectively. These classes are extended classes of abstract class

’Task_CardCommunication.

Task_Card - Communication

I Task Reset J
i ISR1_Port_IlO
Task_ReadPort
ISR2_Port_10
t Task_PW
[ISR3_Port_lO
.- Task_App!
Fig. 12.17 Class diagrams of Task_CardCommunication

Table 12.4

Requirement

Requirements of smart card communication system with a host

Description

Purpose

System
Functioning

Inputs

Signals,
Events and
Notifications

Outputs
Control Panel

1. Enabling authentication and verification of card and card holder by a host and enabling GUI at
host machine to interact with the card holder/user for the required transactions; for example.
financial transactions with a bank or credit card transactions. -

I. The card inserts at host machine. The radiations from the host activate a charge pump at carc
The charge pump powers the SoC circuit, which consists of card processor, memory, tim
interrupt handler and Port_IO. .

2. On power up, system-reset signals resetTask to start. The resetTask sends the messages
requestHeader and requestStart for waiting task task_ReadPort. |

3. task_ReadPort sends requests for host identification and reads through the Port_IO the oS!
identification message and request from host for card identification. -

4. The task_PW sends through Port_IO the requested card identification after system recelva <

host identity through Port_IO.

The task_Appl then runs required APIL. The requestApplClose message closes the apphc o,

The card can now be withdrawn and all transactions between card-holder/user now takes pl

through GUISs using at the host control panel (screen or touch screen or LCD display pane

RN

1. Received header and messages at 10 port Porr_IO from host through the antenna.

—

. On power up by radiation-powered charge-pump supply of the card, a signal to start the sysie

boot program at resetTask. a

2. Card start requestHeader message to task_ReadPort from resetTask. &

3. Host authentication request requestStart message to task_ReadPort from resetTask to ena
requests for Port_IO. -

4. UserPW verification message (notification) through Port_IO from host.
5. Card application close request requestApplClose message to Port_IO.

Transmitted headers and messages at Port_IO through antenna.

No control panel is at the card. The control panel and GUIs activate at the host machine (for exam
at ATM or credit card reader). :

Design metrics

1. Power Source and Dissipation: Radiation powered contact-less operation. k.

2. Code size: Code-size generated should be optimum. The card system memory needs shoult
exceed 64 kB memory. Limited use of data types; multidimensional arrays, long '64—‘ i
and floating points and very limited use of the error handlers, exceptions, signals, eriali
debugging and profiling.

3. File system(s) Three-layered file system for the data. One file for the master ﬁle to store

the group. The third file is the elementary file to hold the file header and file data.
4. File management: There is either a fixed length file management or a variable file §
management with each file with a predefined offset. 3
5. Microcontroller hardware: Generates distinct coded physical addresses for the progral m &
logical addresses. Protected once writable memory space. |
6. Validity: System is embedded with expiry date, after which the card authorization thros
hosts disables.
7. Extendibility: The system expiry date is extendable by transactions and authorization of
control unit (for example, bank servee).
8. Performance: Less than 1 s for transferring control from the card to host machine.

9. Process Deadlines: None.
10. User Interfaces: At host machine, graphic at LCD or touchscreen display on LCD and commands
for card holder (card user) transactions.
11. Engineering Cost. US$ 50000 (assumed).
12. Manufacturing Cost: USS$ 1 (assumed).

1. Tested on different host machine vessions for fail proof card-host communication.

SMART CARD HARDWARE COMPONENTS

4.3 Hardware and Software Architecture

it card hardware was introduced in Section 1.10.3. Figure 12.18 shows hardware inside the card.

| Flash Memory/ROM |
| Tosurface |
" | Micro-controller chip . =z Antenna !
! | host |
i CPU RAM Port_IO AN E
) I Charge pump < ™| antenna |
- DyD; .

l-------_---------------------------------------_--------------_--------------_-____---.

Fig. 12.18 Smart card hardware

LIST OF TASKS, FUNCTIONS AND IPC

Table 12.5 List of tasks, Functions and IPCs

Task IPCs IPCs String or String or
Function pending posted Svstem or System or
Host input Host Outp.
resetTask Initiates system None SigReset. SmartOS call request-Headeé
timer ticks, creates MsgQStart to the main requestStart
tasks, sends initial
messages and
suspends itself.
task_Read Wait for resetTask SigReset, SePW Functions request-
Port Suspenson, sends Messages Smart password,
the queue messages from OS-Encrypt, request-Appl,
and receives the MsgQStart, SmartOS- request-
messages. Starts the MsgQPW, decrypt, ApplClose
application and seeks = MsgQAppl, ApplStr, Str,
closure permission MsgQAppl- close-
for closing the Close Permitted
application.
task_PW Sends request for SemPW MsgQPW, request- -
password on SemAppl Password
verification of
host when
SemPW = |.
task_Appl when SemPW = 1. SemAppl MsgQAppl. — -
runs the
application
program.

TASKS AND THE SYNCHRONIZATION MODEL

‘Reset Task task_ReadPort task_PW task_Appl
Sem Reset
Request Header Sem PW Time
Request Start Request-
Password
MsgQPW
SemAppl
' RequestAppl
MsgQ Appl
MsgQ Appl.close

Request_Appl close

Fig. 12.19 Tasks and the synchronization model

