
1

8051 Addressing Mode and
Instruction Set

2

8051 Instruction Set

 Addressing Modes
 Register addressing
 Direct addressing
 Indirect addressing
 Immediate constant addressing
 Relative addressing
 Absolute addressing
 Long addressing
 Indexed addressing

 Instruction Types
 Arithmetic operations
 Logical operations
 Data transfer instructions
 Boolean variable instructions
 Program branching instructions

3

Introduction

 A computer instruction is made up of an operation code (op-
code) followed by either zero, one or two bytes of operands

 The op-code identifies the type of operation to be performed
while the operands identify the source and destination of the
data

 The operand can be:
 The data value itself
 A CPU register
 A memory location
 An I/O port

 If the instruction is associated with more than one operand,
the format is always:

Instruction Destination, Source

4

Memory Organization

 The memory
organization of
C8051F020 is
similar to that of
a standard 8051

 Program and
data memory
share the same
address space
but are
accessed via
different
instruction types

5

Internal Data Memory

6

Special Function Registers
F8 SPI0CN PCA0H PCA0CPH0 PCA0CPH1 PCA0CPH2 PCA0CPH3 PCA0CPH4 WDTCN

F0 B SCON1 SBUF1 SADDR1 TL4 TH4 EIP1 EIP2

E8 ADC0CN PCA0L PCA0CPL0 PCA0CPL1 PCA0CPL2 PCA0CPL3 PCA0CPL4 RSTSRC

E0 ACC XBR0 XBR1 XBR2 RCAP4L RCAP4H EIE1 EIE2

D8 PCA0CN PCA0MD PCA0M0 PCA0CPM1 PCA0CPM2 PCA0CPM
3

PCA0CPM
4

D0 PSW REF0CN DAC0L DAC0H DAC0CN DAC1L DAC1H DAC1CN

C8 T2CON T4CON RCAP2L RCAP2H TL2 TH2 SMB0CR

C0
SMB0CN SMB0ST

A SMB0DAT SMB0ADR ADC0GTL ADC0GTH ADC0LTL ADC0LTH

B8 IP SADEN0 AMX0CF AMX0SL ADC0CF P1MDIN ADC0L ADC0H

B0 P3 OSCXCN OSCICN P74OUT FLSCL FLACL

A8 IE SADDR0 ADC1CN ADC1CF AMX1SL P3IF SADEN1 EMI0CN

A0 P2 EMI0TC EMI0CF P0MDOUT P1MDOUT P2MDOUT P3MDOUT

98 SCON0 SBUF0 SPI0CFG SPIODAT ADC1 SPI0CKR CPT0CN CPT1CN

90 P1 TMR3CN TMR3RLL TMR3RLH TMR3L TMR3H P7

88 TCON TMOD TL0 TL1 TH0 TH1 CKCON PSCTL

80 P0 SP DPL DPH P4 P5 P6 PCON

0(8)
Bit

addressable
1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F)

7

Addressing Modes

 Eight modes of addressing are available with the
C8051F020

 The different addressing modes determine how the operand
byte is selected

Addressing Modes Instruction
Register MOV A, B
Direct MOV 30H,A
Indirect ADD A,@R0
Immediate Constant ADD A,#80H
Relative* SJMP AHEAD
Absolute* AJMP BACK
Long* LJMP FAR_AHEAD
Indexed MOVC A,@A+PC

* Related to program branching instructions

8

Register Addressing

 The register addressing instruction involves information
transfer between registers

 Example:
MOV R0, A

 The instruction transfers the accumulator content into the R0
register. The register bank (Bank 0, 1, 2 or 3) must be
specified prior to this instruction.

9

Direct Addressing

 This mode allows you to specify the operand by giving its
actual memory address (typically specified in hexadecimal
format) or by giving its abbreviated name (e.g. P3)
Note: Abbreviated SFR names are defined in the “C8051F020.inc” header file

 Example:

MOV A, P3 ;Transfer the contents of
;Port 3 to the accumulator

MOV A, 020H ;Transfer the contents of RAM
;location 20H to the accumulator

10

Indirect Addressing

 This mode uses a pointer to hold the effective address of the
operand

 Only registers R0, R1 and DPTR can be used as the pointer
registers

 The R0 and R1 registers can hold an 8-bit address, whereas
DPTR can hold a 16-bit address

 Examples:

MOV @R0,A ;Store the content of
;accumulator into the memory
;location pointed to by

;register R0. R0 could have an
;8-bit address, such as 60H.

MOVX A,@DPTR ;Transfer the contents from
;the memory location
;pointed to by DPTR into the
;accumulator. DPTR could have a

;16-bit address, such as 1234H.

11

Immediate Constant Addressing

 This mode of addressing uses either an 8- or 16-bit
constant value as the source operand

 This constant is specified in the instruction, rather than in
a register or a memory location

 The destination register should hold the same data size
which is specified by the source operand

 Examples:

ADD A,#030H ;Add 8-bit value of 30H to

;the accumulator register

;(which is an 8-bit register).

MOV DPTR,#0FE00H ;Move 16-bit data constant
;FE00H into the 16-bit Data
;Pointer Register.

12

Relative Addressing

 This mode of addressing is used with some type of jump
instructions, like SJMP (short jump) and conditional jumps
like JNZ

 These instructions transfer control from one part of a
program to another

 The destination address must be within -128 and +127 bytes
from the current instruction address because an 8-bit offset
is used (28 = 256)

 Example:

GoBack: DEC A ;Decrement A

JNZ GoBack ;If A is not zero, loop back

13

Absolute Addressing

 Two instructions associated with this mode of addressing
are ACALL and AJMP instructions

 These are 2-byte instructions where the 11-bit absolute
address is specified as the operand

 The upper 5 bits of the 16-bit PC address are not modified.
The lower 11 bits are loaded from this instruction. So, the
branch address must be within the current 2K byte page of
program memory (211 = 2048)

 Example:
ACALL PORT_INIT ;PORT_INIT should be

;located within 2k bytes.

PORT_INIT: MOV P0, #0FH ;PORT_INIT subroutine

14

Long Addressing

 This mode of addressing is used with the LCALL and LJMP
instructions

 It is a 3-byte instruction and the last 2 bytes specify a 16-bit
destination location where the program branches

 It allows use of the full 64 K code space
 The program will always branch to the same location no

matter where the program was previously

 Example:
LCALL TIMER_INIT ;TIMER_INIT address (16-bits

;long) is specified as the
;operand; In C, this will be a

;function call: Timer_Init().

TIMER_INIT: ORL TMOD,#01H ;TIMER_INIT subroutine

15

Indexed Addressing

 The Indexed addressing is useful when there is a need to retrieve data
from a look-up table

 A 16-bit register (data pointer) holds the base address and the
accumulator holds an 8-bit displacement or index value

 The sum of these two registers forms the effective address for a JMP or
MOVC instruction

 Example:
MOV A,#08H ;Offset from table start

MOV DPTR,#01F00H ;Table start address

MOVC A,@A+DPTR ;Gets target value from the table
;start address + offset and puts it

;in A.

 After the execution of the above instructions, the program will branch to
address 1F08H (1F00H+08H) and transfer into the accumulator the data
byte retrieved from that location (from the look-up table)

