
1

8051 Addressing Mode and
Instruction Set

2

Program Branching Instructions

 Program branching
instructions are used to
control the flow of actions
in a program

 Some instructions provide
decision making
capabilities and transfer
control to other parts of the
program, e.g. conditional
and unconditional branches

Mnemonic Description

ACALL addr11 Absolute subroutine call

LCALL addr16 Long subroutine call

RET Return from subroutine

RETI Return from interrupt

AJMP addr11 Absolute jump

LJMP addr16 Long jump

SJMP rel Short jump

JMP @A+DPTR Jump indirect

JZ rel Jump if A=0

JNZ rel Jump if A NOT=0

CJNE A,direct,rel

Compare and Jump if Not Equal
CJNE A,#data,rel

CJNE Rn,#data,rel

CJNE @Ri,#data,rel

DJNZ Rn,rel Decrement and Jump if Not
ZeroDJNZ direct,rel

NOP No Operation

3

ACALL addr11
 This instruction unconditionally calls a subroutine indicated by the

address
 The operation will cause the PC to increase by 2, then it pushes the 16-

bit PC value onto the stack (low order byte first) and increments the
stack pointer twice

 The PC is now loaded with the value addr11 and the program execution
continues from this new location

 The subroutine called must therefore start within the same 2 kB block of
the program memory

 No flags are affected

 Example:
ACALL LOC_SUB

 If SP=07H initially and the label “LOC_SUB” is at program memory
location 0567H, then executing the instruction at location 0230H,
SP=09H, internal RAM locations 08H and 09H will contain 32H
and 02H respectively and PC=0567H

4

LCALL addr16
 This instruction calls a subroutine located at the indicated address

 The operation will cause the PC to increase by 3, then it pushes the 16-
bit PC value onto the stack (low order byte first) and increments the
stack pointer twice

 The PC is then loaded with the value addr16 and the program execution
continues from this new location

 Since it is a Long call, the subroutine may therefore begin anywhere in
the full 64 kB program memory address space

 No flags are affected

 Example:
LCALL LOC_SUB

 Initially, SP=07H and the label “LOC_SUB” is at program memory
location 2034H. Executing the instruction at location 0230H,
SP=09H, internal RAM locations 08H and 09H contain 33H
and 02H respectively and PC=2034H

5

RET

 This instruction returns the program from a subroutine

 RET pops the high byte and low byte address of PC from
the stack and decrements the SP by 2

 The execution of the instruction will result in the program to
resume from the location just after the “call” instruction

 No flags are affected

 Suppose SP=0BH originally and internal RAM locations 0AH
and 0BH contain the values 30H and 02H respectively. The
instruction leaves SP=09H and program execution will
continue at location 0230H

6

RETI
 This instruction returns the program from an interrupt

subroutine
 RETI pops the high byte and low byte address of PC from

the stack and restores the interrupt logic to accept additional
interrupts

 SP decrements by 2 and no other registers are affected.
However the PSW is not automatically restored to its pre-
interrupt status

 After the RETI, program execution will resume immediately
after the point at which the interrupt is detected

 Suppose SP=0BH originally and an interrupt is detected
during the instruction ending at location 0213H
 Internal RAM locations 0AH and 0BH contain the values 14H and

02H respectively
 The RETI instruction leaves SP=09H and returns

program execution to location 0234H

7

AJMP addr11

 The AJMP instruction transfers program execution to the
destination address which is located at the absolute short
range distance (short range means 11-bit address)

 The destination must therefore be within the same 2kB block
of program memory

 Example:
AJMP NEAR

 If the label NEAR is at program memory location 0120H, the
AJMP instruction at location 0234H loads the PC with
0120H

8

LJMP addr16

 The LJMP instruction transfers program execution to the
destination address which is located at the absolute long
range distance (long range means 16-bit address)

 The destination may therefore be anywhere in the full 64 kB
program memory address space

 No flags are affected

 Example:
LJMP FAR_ADR

 If the label FAR_ADR is at program memory location 3456H,
the LJMP instruction at location 0120H loads the PC
with 3456H

9

SJMP rel

 This is a short jump instruction, which increments the PC by 2
and then adds the relative value ‘rel’ (signed 8-bit) to the PC

 This will be the new address where the program would branch
to unconditionally

 Therefore, the range of destination allowed is from -128 to
+127 bytes from the instruction

 Example:
SJMP RELSRT

 If the label RELSRT is at program memory location 0120H
and the SJMP instruction is located at address 0100H,
after executing the instruction, PC=0120H.

10

JMP @A + DPTR

 This instruction adds the 8-bit unsigned value of the ACC to the 16-bit
data pointer and the resulting sum is returned to the PC

 Neither ACC nor DPTR is altered

 No flags are affected

 Example:
MOV DPTR, #LOOK_TBL

JMP @A + DPTR

LOOK_TBL: AJMP LOC0

AJMP LOC1

AJMP LOC2

If the ACC=02H, execution jumps to LOC1

 AJMP is a two byte instruction

11

JZ rel

 This instruction branches to the destination address if
ACC=0; else the program continues to the next instruction

 The ACC is not modified and no flags are affected

 Example:
SUBB A,#20H
JZ LABEL1
DEC A

 If ACC originally holds 20H and CY=0, then the SUBB
instruction changes ACC to 00H and causes the program
execution to continue at the instruction identified by
LABEL1; otherwise the program continues to the DEC
instruction

12

JNZ rel

 This instruction branches to the destination address if any
bit of ACC is a 1; else the program continues to the next
instruction

 The ACC is not modified and no flags are affected

 Example:
DEC A

JNZ LABEL2

MOV RO, A

 If ACC originally holds 00H, then the instructions change
ACC to FFH and cause the program execution to continue
at the instruction identified by LABEL2; otherwise the
program continues to MOV instruction

13

CJNE <dest-byte>,<source-byte>,rel

 This instruction compares the magnitude of the dest-byte and the
source-byte and branches if their values are not equal

 The carry flag is set if the unsigned dest-byte is less than the unsigned
integer source-byte; otherwise, the carry flag is cleared

 Neither operand is affected

 Example:
CJNE R3,#50H,NEQU

… … ;R3 = 50H
NEQU: JC LOC1 ;If R3 < 50H

… … ;R7 > 50H

LOC1: … … ;R3 < 50H

14

DJNZ <byte>,<rel-addr>
 This instruction is ”decrement jump not zero”
 It decrements the contents of the destination location and if the resulting

value is not 0, branches to the address indicated by the source operand
 An original value of 00H underflows to FFH
 No flags are affected

 Example:
DJNZ 20H,LOC1
DJNZ 30H,LOC2
DJNZ 40H,LOC3

 If internal RAM locations 20H, 30H and 40H contain the values 01H,
5FH and 16H respectively, the above instruction sequence will cause a
jump to the instruction at LOC2, with the values 00H, 5EH, and 15H in
the 3 RAM locations.
 Note, the first instruction will not branch to LOC1 because the [20H] = 00H,

hence the program continues to the second instruction
 Only after the execution of the second instruction (where the

location [30H] = 5FH), then the branching takes place

15

NOP

 This is the no operation instruction
 The instruction takes one machine cycle operation time
 Hence it is useful to time the ON/OFF bit of an output port
 Example:

CLR P1.2

NOP

NOP

NOP

NOP

SETB P1.2

 The above sequence of instructions outputs a low-going output pulse on
bit 2 of Port 1 lasting exactly 5 cycles.
 Note a simple SETB/CLR generates a 1 cycle pulse, so four additional

cycles must be inserted in order to have a 5-clock
pulse width

16

8051 Instruction Set

ACALL: Absolute Call

ADD, ADDC: Add Acc. (With Carry)

AJMP: Absolute Jump

ANL: Bitwise AND

CJNE: Compare & Jump if Not Equal

CLR: Clear Register

CPL: Complement Register

DA: Decimal Adjust

DEC: Decrement Register

DIV: Divide Accumulator by B

DJNZ: Dec. Reg. & Jump if Not Zero

INC: Increment Register

JB: Jump if Bit Set

JBC: Jump if Bit Set and Clear Bit

JC: Jump if Carry Set

JMP: Jump to Address

JNB: Jump if Bit Not Set

JNC: Jump if Carry Not Set

JNZ: Jump if Acc. Not Zero

JZ: Jump if Accumulator Zero

LCALL: Long Call

LJMP: Long Jump

MOV: Move Memory

MOVC: Move Code Memory

MOVX: Move Extended Memory

MUL: Multiply Accumulator by B

NOP: No Operation

ORL: Bitwise OR

POP: Pop Value From Stack

PUSH: Push Value Onto Stack

RET: Return From Subroutine

RETI: Return From Interrupt

RL: Rotate Accumulator Left

RLC: Rotate Acc. Left Through Carry

RR: Rotate Accumulator Right

RRC: Rotate Acc. Right Through Carry

SETB: Set Bit

SJMP: Short Jump

SUBB: Sub. From Acc. With Borrow

SWAP: Swap Accumulator Nibbles

XCH: Exchange Bytes

XCHD: Exchange Digits

XRL: Bitwise Exclusive OR

Undefined: Undefined Instruction

