


What is PIC ?
Peripheral Interface Controller from 
Microchip Technology Inc.USA.

www.microchip.com

PIC 16c6x/16c7x is used for learning purpose.(x=1,4,7)

Program memory type is indicated by an alphabet. 
C = EPROM 
F = Flash 
RC = Mask ROM 

PIC 18Fxx is also popular and widely used 
series today.











PIC microcontroller has four optional clock sources.
 Low power crystal
 Mid range crystal
 High range crystal
 RC oscillator (low cost).

Programmable timers and on-chip ADC.
Up to 12 independent interrupt sources.
Powerful output pin control (25 mA (max.) current sourcing
capability per pin.) 
EPROM/OTP/ROM/Flash memory option.
I/O port expansion capability.
Free assembler and simulator support from Microchip at

http://www.microchip.com/



The CPU uses Harvard architecture with separate Program and
Variable (data) memory interface. This facilitates instruction fetch and the
operation on data/accessing of variables simultaneously.

CPU Architecture 

Fig .1 CPU Architecture of PIC microcontroller 



Pipelining
The combination of the RISC instruction set and the Harvard memory map used by PIC
microcontrollers has an added advantage: instructions can be pipelined.
Every instruction in a computer’s program memory has first to be fetched and then
executed. In many CPUs these two steps are done one after the other—first the CPU
fetches and then it executes.
If, however, program memory has its own address and data bus, separate from data
memory (i.e., a Harvard structure), then there is no reason why a CPU cannot be
designed so that while it is executing one instruction, it is already fetching the next. This
is called pipelining. Pipelining works best if fetch and execute cycles are always of the
same duration, such as a RISC structure gives.
This fairly simple design upgrade gives a doubling in execution speed!

All PIC microcontrollers implement pipelining, which is one of the reasons for their
comparatively high speed of operation. Each instruction is fetched while the previous
one is being executed.

Pipelining fails only for instructions that cause the value in the Program Counter to be
changed, for example a program branch or jump. In this case, the instruction fetched is
no longer the one needed. The pipelining process must then start again, with the
consequent loss of an instruction cycle.



Fig 2. Pipelining



Fig 3(a). Pipelining



Fig 3(b). Pipelining




