INTRODUCTION TO RADAR

WHAT IS RADAR?

RADAR (RADIO DETECTION AND RANGING) IS A WAY TO DETECT AND STUDY FAR OFF TARGETS BY TRANSMITTING A RADIO PULSE IN THE DIRECTION OF THE TARGET AND OBSERVING THE REFLECTION OF THE WAVE.

IT'S BASICALLY RADIO ECHO .

1885-1888 BASIC CONCEPT OF RADAR WAS DEMONSTRATED BY HEINRICH. HERTZ VERIFIED THE MAXWELL PREDICTIONS ON ELCTROMAGNETICS.

> USED APPARATUS SIMILAR TO PULSE RADAR.

SHOWED THAT RADIO WAVE CAN BE REFLECTED FROM METAL OBJECTS AND REFRACTED BY A PRISM.

HERTZ DID NOT PERSUE HIS WORK.

- 1900 CHRISTION HULSMAYER, ASSEMBLED WHAT IS KNOWN AS MONOSTATIC PULSE RADAR. HIS RADAR DETECTED SHIPS BUT NO ONE SHOWED INTEREST IN BUYING IT.
- 1920SG MARCONI OBSERVED RADIODETECTION OF TARGETS AND STRONGLYURGED ITS USE.

A HOYT OF US NAVAL RESEARCH LABORATORY, OBSERVED A FLUCTUATING SIGNAL WHEN A SHIP PASSED BETWEEN TRANSMITTER AND RECEIVER LOCATED ON OPPOSITE SIDES

OF RIVER.

1930 APPEARANCE OF HEAVY MILITARY BOMBER THAT GAVE RISE TO OPERATIONAL MILITARY RADAR. AFTER WWI, BOMBER WAS CONVERTED FROM FABRIC TO METAL AIRCRAFT. SOUND LOCATERS, SPARK PLUG IGNITION NOISE DETECTION/ ABANDONED.

> INFRA RED WAS TRIED BUT DID NOT HAVE RANGE.

BISTATIC CW RADAR WAS TRIED.

RADAR WAS REDISCOVERED & DEVELOPED SIMULTANEOUSLY IN US,

UK, GERMANY, SOVIET UNION, FRANCE, ITALY, JAPAN & NETHERLAND.

UNITED STATES:

1934SERIOUS EFFORTS STARTED TO
DEVELOP RADAR.

BY 1941, 132 RADARS WERE DELIVERED TO US NAVY & 79 WERE INSTALLED ON VARIOUS SHIPS.

THERE TO MAKE USE OF THE INFORMATION.

UNITED KINGDOM:

1935 FELT THE URGENCY OF RADAR DUE TO APPROACHING WAR. BY 1938,THEY PRODUCED THE CHAIN HOME RADAR.

1940

HIGH POWER MAGNETRON WAS DISCOVERED WHICH MADE IT POSSIBLE FOR RADAR TO OPERATE ON MICROWAVE FREQUENCIES.

RADAR DEVELOPMENT GERMANY:

1940 HAD THREE MAJOR RADARS.

(A) 125 MHZ FREYA, AIR SEARCH RADAR

(B) WURZBURG, FIRE CONTROL RADAR

(C) 500 MHZ SEETAKE SHIPBORNE RADAR

GERMANY WAS AHEAD OF BRITISH & AMERICAN FORCES IN RADAR TECHNOLOGY BUT COULD NOT TAKE ADVANTAGE OF THIS FACT.

<u>U.S.S.R:</u>

1930's STARTRD THE DEVELOPMENT OF RADAR AND BY 1941 HAD DEPLOYED PRODUCTION & DEVELOPMENT RADARS.

THE FIRST RADAR RUS -1 WAS BISTATIC. RUS-2 WAS MONOSTATIC, TRUCK MOUNTED.

ITALY:

1941 AFTER DEFEAT WHERE BRITISH RADARS WERE USED TO FIRE UPON ITALIAN SHIPS, THE PRODUCTION / DEVELOPMENT STARTED.

FIRST RADAR "OWL" WAS 200 MHZ, SHIPBOARD RADAR. WORK STOPPED IN 1943 WHEN ALLIED FORCES RAIDED ITALY.

MICROWAVE MAGNETRON

MAJOR ADVANCE BY DEVELOPMENT OF MAGNETRON IN UNIVERSITY OF BIRMINGHAM. REDUCED THE SIZE OF ANTENNE AND OPENED UP HIGHER FREQUENCIES.SHIP BORN ANTENNAE COULD BE MADE.

AFTER WORLD WAR II:

USE OF DOPPLER EFFECT IN MTI

HIGH POWER STABLE AMPLIFIERS LIKE KLYSTRON,TWT & SOLID STATE TRANSISTORS ALLOWED BETTER APPLICATIONS.

HIGHLY ACCURATE ANGLE TRACKING.

(SAR)

HIGH POWER SYNTHETIC APERTURE RADARS PROVIDED HIGH RESOLUTIONS, MAP LIKE IMAGING.

ELECTRONICALLY STEERED PHASE ARRAY RADARS, OFFERED RAPID BEAM STEERING.

DSP AND DDP (DIGITAL SIGNAL / DATA PROCESSING)

RADAR

RADIO DETECTION AND RANGING

RADAR OBSERVABLES:

- TARGET RANGE.
- TARGET ANGLES (AZIMUTH & ELEVATION).
- TARGET SIZE (RADAR CROSS SECTION).
- TARGET SPEED (DOPPLER).
- TARGET FEATURES (IMAGING).

TWO BASIC RADAR TYPES

PULSE TRANSMISSION

CONTINUOUS WAVE

PULSE RADAR COMPONENTS

RADAR BLOCK DIAGRAM

A TYPICAL RADAR PULSE DIAGRAM

PULSE TRANSMISSION

- PULSE WIDTH (PW)
- **PULSE REPETITION TIME (PRT=1/PRF)**
- PRT IS TIME FROM BEGINNING OF ONE PULSE TO THE BEGINNING OF THE NEXT
 - LENGTH OR DURATION OF A GIVEN PULSE

PRF IS FREQUENCY AT WHICH CONSECUTIVE PULSES ARE TRANSMITTED.

PULSE TRANSMISSION

•PW CAN DETERMINE THE RADAR'S MINIMUM DETECTION RANGE;

• PW CAN DETERMINE THE RADAR'S MAXIMUM DETECTION RANGE (IF PEAK POWER IS CONSTANT).

RADAR WAVE MODULATION

AMPLITUDE MODULATION

VARY THE AMPLITUDE OF THE CARRIER SINE WAVE

FREQUENCY MODULATION

VARY THE FREQUENCY OF THE CARRIER SINE WAVE

RADAR WAVE MODULATION

•PULSE-FREQUENCY MODULATION VARY THE FREQUENCY AT WHICH THE PULSES OCCUR

•FREQUENCY MODULATION CONTINUOUS WAVE IS SAME AS PULSE-FREQUENCY MODULATION BUT CONTINUOUS

TYPES OF RADAR

TYPES OF RADAR

- 2. **CW radar** transmits continuous wave (CW)
- can detect objects, measures velocity from Doppler shift, but cannot measure range
- 3. FM-CW radar frequency-modulated CW transmitted signal
- detects, measures range and radial velocity

4.

Pulsed radar includes MTI (moving target indicator) and Pulsed Doppler

detects, measures range and velocity, but has blind speeds and ranges

CONTINUOUS WAVE RADAR

EMPLOYS CONTINUAL RADAR TRANSMISSION

 SEPARATE TRANSMIT AND RECEIVE ANTENNAS

RELIES ON THE "DOPPLER SHIFT"

RADAR FUNCTIONS

- Normal radar functions:
 - 1. range (from pulse delay)
 - 2. velocity (from Doppler frequency shift)
 - 3. angular direction (from antenna pointing)
- Signature analysis and inverse scattering:
 - 4. target size (from magnitude of return)
 - 5. target shape and components (return as a function of direction)
 - 6. moving parts (modulation of the return)
 - 7. material composition
- The complexity (cost & size) of the radar increases with the extent of the functions that the radar performs.

ELECTROMAGNETIC SPECTRUM

27

RADAR FREQUENCY BANDS

	BAND	NOMINAL FREQUENCY RANGE	SPECIFIC FREQUENCY RANGE AS PER I.T.U
	HF	3-30 MHZ	
	VHF	30-300 MHZ	138 – 144 & 216 – 225 MHZ
	UHF	300-1000 MHZ	420 – 450 & 850 – 942 MHZ
		1-2 GHZ	1.215 – 1.40 GHZ

	BAND	NOMINAL FREQUENCY RANGE	SPECIFIC FREQUENCY RANGE AS PER I.T.U.
	S	2-4 GHZ	2.3 - 2.5 & 2.7 – 3.7 GHZ
	С	4-8 GHZ	5.25 – 5.925 GHZ
	X	8-12 GHZ	8.5 – 10.680 GHZ
X	KU	12-18 GHZ	13.4 – 14.0 GHZ & 15.7 – 17.7 GHZ

BAND	NOMINAL FREQUENCY RANGE	SPECIFIC FREQUENCY RANGE AS PER I.T.U.
Κ	18 – 27 GHZ	24.05 – 24.25 GHZ
KA	27 – 40 GHZ	33.4 – 36.0 GHZ
V	40 – 75 GHZ	59 – 64 GHZ
W	75 – 110 GHZ	76 – 81 & 92 – 100 GHZ

S FREQUENCY
2 GHZ 9 GHZ 5 GHZ
) (3 5 (3 6 (3

APPLICATIONS OF RADAR

MILITARY

AIR DEFENCE

REMOTE SENSING

WEATHER

PLANETARY OBSERVATIONS

SHORT RANGE BELOW GROUND PROBING

MAPPING OF SEA

AIR ROUTE SURVIALLENCE RADAR

TERMINAL DOPPLER WEATHER RADAR

ATC RADAR BEACON SYSTEM

APPLICATIONS OF RADAR

LAW & HIGHWAY SAFETY DOPPLER RADAR FOR SPEED LIMITS.

AIRCRAFT SAFETY

& NAVIGATION

WEATHER AVOIDANCE RADAR TERRAIN AVOIDANCE / TERRAIN FOLLOWING RADAR

RADIO ALTIMETER

FOR COLLISION AVOIDANCE IN LOW VISIBILITY.

SPACE FOR RENDEZEVOUS & DOCKING FOR LANDING ON MOON GD BASED RADARS FOR TRACKING OTHERS MEASUREMENT OF SPEED / DISTANCE OIL & GAS EXPLORATIONS, ENTOMOLOGY.

TYPES AND USES OF RADAR

- SEARCH RADARS SCAN A LARGE AREA WITH PULSES OF SHORT RADIO WAVES
- TRACKING RADARS USE THE SAME PRINCIPLE BUT SCAN A SMALLER AREA MORE OFTEN
- NAVIGATIONAL RADARS ARE LIKE SEARCH RADARS, BUT USE SHORT WAVES THAT REFLECT OFF HARD SURFACES. THEY ARE USED ON COMMERCIAL SHIPS AND LONG-DISTANCE COMMERCIAL AIRCRAFT

TYPES AND USES OF RADAR

 MAPPING RADAR SCANS A LARGE REGION FOR <u>REMOTE SENSING</u> AND <u>GEOGRAPHY</u> APPLICATIONS.

AIR TRAFFIC CONTROL USES RADAR TO REFLECT ECHOES OF <u>AIRCRAFT</u>

WEATHER RADAR USES RADAR TO REFLECT ECHOES OF CLOUDS.

TYPES AND USES OF RADAR

- WEATHER RADARS USE RADIO WAVES WITH HORIZONTAL, DUAL (HORIZONTAL AND VERTICAL), OR CIRCULAR POLARIZATION.
- SOME WEATHER RADARS USE THE <u>DOPPLER</u> <u>EFFECT</u> TO MEASURE WIND SPEEDS.

INCOHERENT SCATTER RADAR-A RADAR APPLICATION

USED TO STUDY THE EARTH'S <u>IONOSPHERE</u> AND ITS INTERACTIONS WITH THE UPPER ATMOSPHERE, THE MAGNETOSPHERE, AND THE SOLAR WIND.

INCOHERENT SCATTER ECHO

- <u>ELECTRONS</u> IN IONOSPHERE ARE RADAR TARGETS.
- THESE ELECTRONS CAN SCATTER <u>RADIO WAVES</u>.

RADAR CAN MEASURE PRESSURE

THE STRENGTH OF THE ECHO RECEIVED FROM THE IONOSPHERE MEASURES THE NUMBER OF ELECTRONS ABLE TO SCATTER RADIO WAVES OR WHAT WE CALL ELECTRON PRESSURE.

RADAR CAN MEASURE TEMPERATURE

SOME ELECTRONS ARE MOVING DUE TO HEAT - IN THIS CASE THE ECHO IS SCATTERED.

Temperature is a measure of the average kinetic energy of the gas molecules.

RADAR CAN MEASURE TEMPERATURE

AS THE TEMPERATURE INCREASES, THE ELECTRONS MOVE FASTER SO RADAR CAN ACT LIKE A THERMOMETER AND MEASURE THE TEMPERATURE OF THE IONOSPHERE.

RADAR CAN MEASURE WIND

- WHEN AN ELECTRON
 IS REMOVED FROM AN ATOM, THE REMAINING CHARGED ATOM IS CALLED AN ION.
- THE ION GAS CAN HAVE A DIFFERENT TEMPERATURE FROM THE ELECTRON GAS

RADAR CAN MEASURE WIND SPEED

THE ELECTRON/ION MIXTURE IS KNOWN AS A **PLASMA** AND IS USUALLY IN MOTION (LIKE OUR WIND).

SO INCOHERENT SCATTER RADAR CAN ALSO MEASURE WIND SPEED.

