## Lecture -3 <br> Fourier Transform Properties

# Fourier Transform Properties and Examples 

Objectives:

1. Properties of a Fourier transform

- Linearity \& time shifts
- Differentiation
- Convolution in the frequency domain

While the Fourier series/transform is very important for representing a signal in the frequency domain, it is also important for calculating a system's response (convolution).

- A system's transfer function is the Fourier transform of its impulse response
- Fourier transform of a signal's derivative is multiplication in the frequency domain: $j X(j)$
- Convolution in the time domain is given by multiplication in the frequency domain (similar idea to log transformations)


## Review: Fourier Transform

A CT signal $x(t)$ and its frequency domain, Fourier transform signal, $X(j)$, are related by

$$
\begin{aligned}
X(j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t & & \text { analysis } \\
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega & & \text { synthesis }
\end{aligned}
$$

This is denoted by:

$$
x(t) \stackrel{F}{\leftrightarrow} X(j \omega)
$$

For example:

$$
e^{-a t} u(t) \stackrel{F}{\leftrightarrow} \frac{1}{a+j \omega}
$$

Often you have tables for common Fourier transforms
The Fourier transform, $X(j)$, represents the frequency content of $x(t)$.
It exists either when $x(t)->0$ as $|t|->\infty$ or when $x(t)$ is periodic (it generalizes the Fourier series)

## Linearity of the Fourier Transform

The Fourier transform is a linear function of $x(t)$

$$
\begin{aligned}
& x_{1}(t) \stackrel{F}{\leftrightarrow} X_{1}(j \omega) \\
& x_{2}(t) \stackrel{F}{\leftrightarrow} X_{2}(j \omega) \\
& a x_{1}(t)+b x_{2}(t) \stackrel{F}{\leftrightarrow} a X_{1}(j \omega)+b X_{2}(j \omega)
\end{aligned}
$$

This follows directly from the definition of the Fourier transform (as the integral operator is linear) \& it easily extends to an arbitrary number of signals
Like impulses/convolution, if we know the Fourier transform of simple signals, we can calculate the Fourier transform of more complex signals which are a linear combination of the simple signals

## Fourier Transform of a Time Shifted Signal

We'll show that a Fourier transform of a signal which has a simple time shift is:

$$
F\left\{x\left(t-t_{0}\right)\right\}=e^{-j \omega t_{0}} X(j \omega)
$$

i.e. the original Fourier transform but shifted in phase by - $t_{0}$

## Proof

Consider the Fourier transform synthesis equation:

$$
\begin{aligned}
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \\
x\left(t-t_{0}\right) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega\left(t-t_{0}\right)} d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(e^{-j \omega t_{0}} X(j \omega)\right) e^{j \omega t} d \omega
\end{aligned}
$$

but this is the synthesis equation for the Fourier transform

$$
e^{-j}{ }^{0 t} X(j)
$$

## Example: Linearity \& Time Shift

Consider the signal (linear sum of two time shifted rectangular pulses)

$$
x(t)=0.5 x_{1}(t-2.5)+x_{2}(t-2.5)
$$

where $x_{1}(t)$ is of width $1, x_{2}(t)$ is of width 3 ,
centred on zero (see figures)
Using the FT of a rectangular pulse L10S7

$$
\begin{aligned}
& X_{1}(j \omega)=2 \sin (\omega / 2) / \omega \\
& X_{2}(j \omega)=2 \sin (3 \omega / 2) / \omega
\end{aligned}
$$

Then using the linearity and time shift
Fourier transform properties




$$
X(j \omega)=e^{-j 5 \omega / 2}((\sin (\omega / 2)+2 \sin (3 \omega / 2)) / \omega)
$$

## Fourier Transform of a Derivative

By differentiating both sides of the Fourier transform synthesis equation with respect to $t$ :

$$
\frac{d x(t)}{d t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} j \omega X(j \omega) e^{j \omega t} d \omega
$$

Therefore noting that this is the synthesis equation for the Fourier transform ${ }^{j} X(j)$

$$
\frac{d x(t)}{d t} \stackrel{F}{\leftrightarrow} j \omega X(j \omega)
$$

This is very important, because it replaces differentiation in the time domain with multiplication (by $j$ ) in the frequency domain.
We can solve ODEs in the frequency domain using algebraic operations (see next slides)

## Convolution in the Frequency Domain

We can easily solve $O D E s$ in the frequency domain:

$$
y(t)=h(t)^{*} x(t) \stackrel{F}{\leftrightarrow} Y(j \omega)=H(j \omega) X(j \omega)
$$

Therefore, to apply convolution in the frequency domain, we just have to multiply the two Fourier Transforms.

To solve for the differential/convolution equation using Fourier transforms:

1. Calculate Fourier transforms of $x(t)$ and $h(t): X(j)$ by $H(j)$
2. Multiply $H(j)$ by $X(j)$ to obtain $Y(j)$
3. Calculate the inverse Fourier transform of $Y(j)$
$H(j)$ is the LTI system's transfer function which is the Fourier transform of the impulse response, $h(t)$. Very important in the remainder of the course (using Laplace transforms)
This result is proven in the appendix

## Example 1: Solving a First Order ODE

Calculate the response of a CT LTI system with impulse response:

$$
h(t)=e^{-b t} u(t) \quad b>0
$$

to the input signal:

$$
x(t)=e^{-a t} u(t) \quad a>0
$$

Taking Fourier transforms of both signals:

$$
H(j \omega)=\frac{1}{b+j \omega}, \quad X(j \omega)=\frac{1}{a+j \omega}
$$

gives the overall frequency response:

$$
Y(j \omega)=\frac{1}{(b+j \omega)(a+j \omega)}
$$

to convert this to the time domain, express as partial fractions:

$$
Y(j \omega)=\frac{1}{b-a}\left(\frac{1}{(a+j \omega)}-\frac{1}{(b+j \omega)}\right) \quad \begin{aligned}
& \text { assume } \\
& b \neq a
\end{aligned}
$$

Therefore, the CT system response is:

$$
y(t)=\frac{1}{b-a}\left(e^{-a t} u(t)-e^{-b t} u(t)\right)
$$

## Example 2: Design a Low Pass Filter

Consider an ideal low pass filter in frequency domain:

$$
\begin{aligned}
& H(j \omega)= \begin{cases}1 & |\omega|<\omega_{c} \\
0 & |\omega|>\omega_{c}\end{cases} \\
& Y(j \omega)=\left\{\begin{array}{cl}
X(j \omega) & |\omega|<\omega_{c} \\
0 & |\omega|>\omega_{c}
\end{array}\right.
\end{aligned}
$$



The filter's impulse response is the inverse Fourier transform

$$
h(t)=\frac{1}{2 \pi} \int_{-\omega_{c}}^{\omega_{c}} e^{j \omega t} d \omega=\frac{\sin \left(\omega_{c} t\right)}{\pi t}
$$


which is an ideal low pass CT filter. However it is non-causal, so this cannot be manufactured exactly \& the time-domain oscillations may be undesirable
We need to approximate this filter with a causal system such as $1^{\text {st }}$ order LTI system impulse response $\{h(t), H(j)\}$ :

$$
a^{-1} \frac{\partial y(t)}{\partial t}+y(t)=x(t), \quad e^{-a t} u(t) \stackrel{F}{\leftrightarrow} \frac{1}{a+j \omega}
$$

## Summary

The Fourier transform is widely used for designing filters. You can design systems with reject high frequency noise and just retain the low frequency components. This is natural to describe in the frequency domain.

Important properties of the Fourier transform are:

1. Linearity and time shifts $a x(t)+b y(t) \leftrightarrow a X(j \omega)+b Y(j \omega)$
2. Differentiation
3. Convolution

$$
\begin{aligned}
& \frac{d x(t)}{d t} \stackrel{F}{\leftrightarrow} j \omega X(j \omega) \\
& y(t)=h(t) * x(t) \stackrel{F}{\leftrightarrow} Y(j \omega)=H(j \omega) X(j \omega)
\end{aligned}
$$

Some operations are simplified in the frequency domain, but there are a number of signals for which the Fourier transform does not exist - this leads naturally onto Laplace transforms. Similar properties hold for Laplace transforms \& the Laplace transform is widely used in engineering analysis.

## Appendix: Proof of Convolution Property

$$
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

Taking Fourier transforms gives:

$$
Y(j \omega)=\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau\right) e^{-j \omega t} d t
$$

Interchanging the order of integration, we have

$$
Y(j \omega)=\int_{-\infty}^{\infty} x(\tau)\left(\int_{-\infty}^{\infty} h(t-\tau) e^{-j \omega t} d t\right) d \tau
$$

By the time shift property, the bracketed term is $e^{-j} H(j)$, so

$$
\begin{aligned}
Y(j \omega) & =\int_{-\infty}^{\infty} x(\tau) e^{-j \omega \tau} H(j \omega) d \tau \\
& =H(j \omega) \int_{-\infty}^{\infty} x(\tau) e^{-j \omega \tau} d \tau \\
& =H(j \omega) X(j \omega)
\end{aligned}
$$

