Introduction

Computer Networks: Introduction

$\mathcal{N e}$ twork $\mathcal{D e}$ finitions and Classification

- Preliminary definitions and network terminology
- Sample application paradigms
- Classifying networks by transmission technology
- Classifying networks by size (or scale)
- Classifying networks by topology

Preliminary Definitions

computer network :: [Tanenbaum] a collection of "autonomous" computers interconnected by a single technology.
[LG\&W] communications network ::a set of equipment and facilities that provide a service.
[PD] \{low level definition\} A network can consist of two or more computers directly connected by some physical medium such as coaxial cable or an optical fiber. Wireless connectivity needs to be included in this definition.

$\mathcal{N e}$ twork $\mathcal{B u i l d i n g} \mathcal{B l o c k s}$

- Nodes and Hosts: computers, routers, switches
- Links: coaxial cable, optical fiber, wireless communication
- point-to-point

- multiple access
(b)

$$
\text { Preliminary } \mathcal{D e} \text { finitions }
$$

In a distributed system the collection of independent computers appears to its users as a single coherent system.
Namely, the distinctions lie in the transparency in assigning tasks to computers.

S witched $\mathcal{N e}$ tworks

Figure 1.3

internet

Figure 1.4 Interconnection of networks

$\mathcal{N e t w o r k}$

P\&D recursive definition::
i. two or more nodes connected by a link.

or

ii. two or more networks connected by a node \{an internet\}.

Computer Networks: Introduction

Sample Application Paradigms

Client-Server Applications

Figure 1.1 A network with two clients and one server.

Client-Server Model

Figure 1-2. The client-server model involves requests and replies.
Peer-to-Peer Applications

Figure 1.3 In a peer-to-peer system there are no fixed clients and servers.

Mobile $\mathcal{N e}$ twork \mathcal{K} Isers

Wireless	Mobile	Applications
No	No	Desktop computers in offices
No	Yes	A notebook computer used in a hotel room
Yes	No	Networks in older, unwired buildings
Yes	Yes	Portable office; PDA for store inventory

Figure 1-5. Combinations of wireless networks and mobile computing.

$$
\begin{aligned}
& \text { Classifying Networks by } \\
& \text { Transmission Tecłnology }
\end{aligned}
$$

broadcast :: a single communications channel shared by all machines (addresses) on the network.
Broadcast can be either a logical or a physical concept (e.g. Media Access Control (MAC) sublayer) .
multicast :: communications to a specified group.
This requires a group address (e.g. - multimedia multicast).
point-to-point :: connections are made via links between pairs of nodes.

$\mathcal{N e}$ twork \mathcal{K} Cassification by Size

$\begin{array}{c}\text { Interprocessor } \\ \text { distance }\end{array}$	$\begin{array}{c}\text { Processors } \\ \text { located in same }\end{array}$		
1 m	Square meter		
10 m	Room		
100 m	Building		
1 km	Campus		
10 km	City		
100 km	Country		
1000 km	Continent		
$10,000 \mathrm{~km}$	Planet	$\}$	Metropolitan area network
:---			

Figure 1-6. Classification of interconnected processors by scale.

$\mathcal{N e}$ twork \mathcal{K} Cassification by Size

- LANs \{Local Area Networks\}
- Wired LANs: typically physically broadcast at the MAC layer (e.g., Ethernet, Token Ring)
- Wireless LANs
- MANs \{Metropolitan Area Networks\}
- campus networks connecting LANs logically or physically.
- often have a backbone (e.g., FDDI and ATM)

Wired $\mathcal{L A N}$ s

Ethernet bus
Ethernet hub

Wireless $\mathcal{L A N} \mathfrak{N}$

Figure 1-35. (a) Wireless networking with a base station. (b) Ad hoc networking.

Metropolitan Are a Networks

Figure 1-8. A metropolitan area network based on cable TV.

Metropolitan network A consists of access subnetworks a, b, c, d.

Hierarcfical $\mathfrak{N e}$ twork \mathcal{T} opology

National network consists of regional subnetworks , ,.

Metropolitan network A is part of regional subnetwork α.

$\mathcal{N e}$ twork \mathcal{K} Classification by Size

- WANs \{Wide Area Networks\}
- ARPANET \rightarrow Internet
- usually hierarchical with a backbone.
- Enterprise Networks, Autonomous Systems (ASs)
- VPNs (Virtual Private Networks).

ARPAnet circa 1972
a point-to-point network

Figure 1.16

$$
\begin{gathered}
\text { Wide } \operatorname{Area} \mathfrak{N e t w o r k s} \\
(\mathcal{W} \mathcal{A} \mathcal{N} s)
\end{gathered}
$$

Figure 1-10.A stream of packets from sender to receiver.

Figure 1.18

$\mathcal{N e}$ twork Classification 6y Topology Bus

Bidirectional flow assumes baseband cable

$\mathcal{N e}$ twork Classification by Topology
 Ring

Note - a ring implies unidirectional flow

$\mathcal{N e}$ twork Classification 6y Topology

Computer Networks: Introduction

NetworkClassification by Topology

Star

$\mathcal{N e}$ twork Classification by Topology

Star

Wireless Infrastructure

Computer Networks: Introduction

