PC Peripherals for Technicians

Interfaces: Parallel Port

1

The Parallel Port

OBJECTIVES: At the end of this section, the student will be able to do the following:

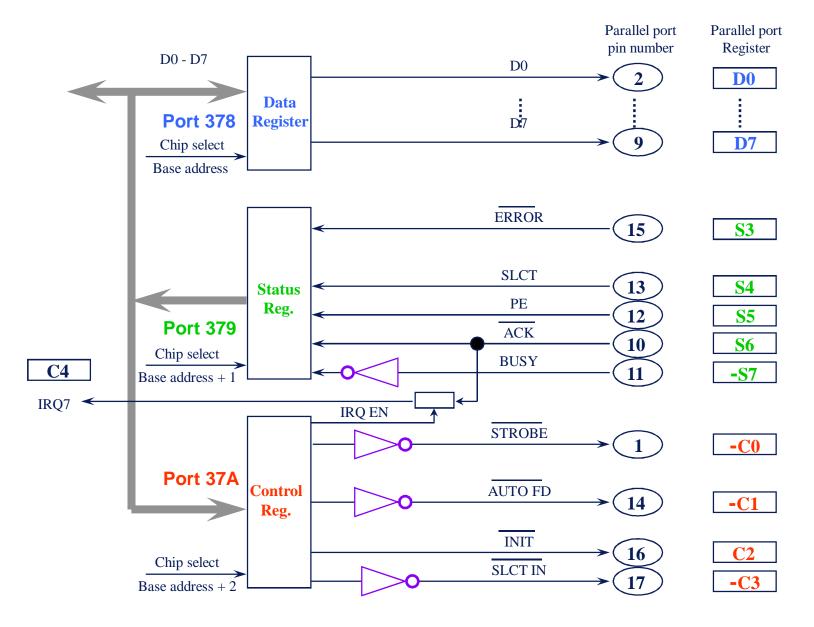
- Describe the functions of the Standard Parallel Port.
- Discuss Parallel Port I/O addresses.
- Describe the Standard Parallel Port registers and connector input/output signals.
- Explain the use of loopbacks for testing the SPP.
- Discuss Parallel Port BIOS support.
- Discuss the IEEE-1284 standard and the EPP/ECP Bidirectional modes. 2

Standard Parallel Port Overview

- The PC parallel port is specifically designed to attach printers with a parallel port interface, but it can be used as a general input/output port for any device or application that matches its input/output capabilities.
 - The parallel port in the original IBM PC is sometimes called the SPP, for Standard Parallel Port
 - » Other names used are AT-type or ISA-compatible.
 - The port in the original PC was based on an existing Centronics printer interface & had no written standard beyond the diagrams and documentation for the IBM PC.
 - The SPP transfers 8 bits at once to a peripheral, using a protocol similar to that used by the *Centronics* interface.
 - » <u>**Centronics</u>** was a printer manufacturer that ceased to exist many years ago.</u>

Standard Parallel Port Overview

- The parallel port contains no intelligence and is just a set of latches and buffers together with some address decoding circuitry.
- Software outputs instructions that explicitly set & reset bits in the latches-these are used to generate all control signals.



Parallel Port Addresses & Names

- The standard parallel port uses three contiguous addresses, usually in one of these ranges:
 - » 378h, 379h, 37Ah
 - » 278h, 279h, 27Ah
 - » 3BCh, 3BDh, 3BEh
 - > For ports implemented on Monochrome Video Cards.
 - > On newer systems the parallel port base address is most often at 378h, but all three addresses are reserved for parallel ports.
- Addresses:
 - The 1st address (e.g. 378h) is the port's <u>base address</u>, also called the <u>Data register</u> or just the <u>port address</u>.
 - >The 2nd address (e.g. 379h) is the port's Status register
 - >The 3rd address (e.g. 37Ah) is the Control register.

Parallel Port Addresses & Names

- During POST, the BIOS checks for parallel printer ports by writing data at base addresses 0x3BC, 0x378, and 0x278, reading the same address, and deciding that there is a port installed if it compares.
 - The BIOS stores the base addresses (2 bytes) of any parallel ports that are found in consecutive locations in a table starting at main memory address 0x408.
 - » The first entry in the BIOS table at 0x408 becomes LPT1, the 2nd LPT2, and the 3rd LPT3 (if there are that many).
 - > LPT1 parallel port base address is most often 0x378.
 - > 0000:0408 78 03 (0378h stored in little endian format)
 - » Some software ignores this table, but it is used by the BIOS itself (e.g. INT 17, Printer I/O) and by DOS.
 - The DOS device "PRN" is a software alias--by default LPT1.
 (The DOS MODE command changes the PRN alias).

	Bits	7	6	5	4	3	2	1	0
Base (e.g 378h)	Data	Х	Х	Х	Х	Х	Х	Х	Х
Base+1 (e.g 379h)	Status	-X	Х	Х	Х	Х			
Base+2 (e.g 37Ah)	Control					-X	Х	-X	-X

- Base Address = 278, 378, or 3BC Hex
 - > i.e. Base = 378 Hex DATA PORT
 - i.e. Base+1 = 379 Hex STATUS PORT

i.e. Base+2 = 37A Hex CONTROL PORT

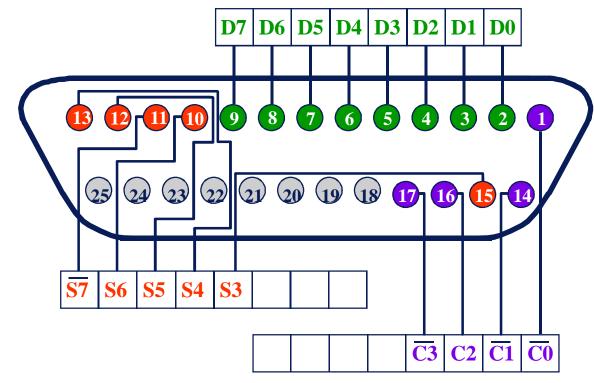
• NOTE: S7, C0, C1 & C3 are inverted (-X).

▷i.e. Parallel Port pin 11 high (Busy) will set S7=0

▷i.e. C0=1 causes Parallel Port pin 1 (Strobe#) to go Low

- The parallel port responds to five I/O instructions:
 - >Two output registers (Data & Control):
 - The <u>output instructions</u> transfer data into two latches (Data & Control Registers) whose outputs are presented on the pins of a 25-pin D-type female connector.
 - » Output to 278/378/3BC Hex (Data Reg): Captures data from the data bus and presents on the respective pins.
 - » Output to 27A/37A/3BE Hex (Control Reg): The latch captures the least significant bits of the data bus.

	Bits	7	6	5	4	3	2	1	0
Base (e.g 378h)	Data	Х	Х	Х	Х	Х	Х	Х	Х
Base+1 (e.g 379h)	Status	-X	Х	Х	Х	Х			
Base+2 (e.g 37Ah)	Control					-X	Х	-X	-X


- The parallel port responds to five I/O instructions: (cont)
 - >Three input registers (Status, Data, & Control)
 - » Input from 279/379/3BD Hex (Status Reg) READ ONLY: Reads the real-time status of a group of pins on the connector.
 - <u>READS BACK</u> the contents of the two latches:
 - » Input from 278/378/3BC Hex (Data Reg): This command presents the processor with data present on the pins.
 - » Input from 27A/37A/3BE Hex (Control Reg): Data on pins 1,14,16,17 and the IRQ bit to be read by CPU.

	Bits	7	6	5	4	3	2	1	0
Base (e.g 378h)	Data	Х	Х	Х	Х	Х	Х	Х	Х
Base+1 (e.g 379h)	Status	-X	Х	Х	Х	Х			
Base+2 (e.g 37Ah)	Control					-X	Х	-X	-X
-									10

> I/O signals available through a 25-pin, D-type female connector.

» Connector protrudes through the rear panel of the system.

- In IBM compatible PC, the Centronics parallel port uses a 25-pin connector in place of the original 36-pin form.
 - » Sharing ground leads saved space & cost on early PC's
 - » Cable length should not exceed 5 meters.

Designed as a printer port, and many of the signal names (PaperEnd, AutoLineFeed) reflect that use.

Pin 2-9: Data 0 - Data 7 (Data Reg bit 7:0)

- » Sends data BYTES to the external device on these lines.
- » Note: These are Bi-directional on later designs and an extra bit (C5) is implemented in the Control Register.
- >Pin 1: STROBE# (Data strobe Ctrl Reg bit C0-)
 - » Control Line <u>output</u> that when set low (> 0.5 uS) by software (e.g writing 1 to bit C0-) causes the external device (e.g. printer) to latch the data byte on pins 2-9 (<u>WRITE SIGNAL</u>).
 - » Data is sent to the printer when STROBE# is asserted.
- Pin 14: AUTO FD# (Auto Feed Ctrl Reg bit C1-)
 - » Control Line <u>output</u> that when set low causes the printer to advance the paper 1 line for each Carriage Return (0Dh).
 - Most printers give a choice on whether it just returns the printhead to beginning of line or also advances the paper.

Pin 16: INIT# (Initialize - Ctrl Reg bit C2+)

» Control Line <u>output</u> that when set low (> 50 uS) by software causes the printer to be initialized and placed on-line (~reset command --Clears the printers buffers).

>Pin 17: SLCTIN# (Select Printer- Ctrl Reg bit C3-)

- » Control Line <u>output</u> that when set low by software causes the printer to be selected by the host computer.
- » Many printers fix this signal internally to ground or provide a DIP switch so that the printer is always selected.

Pin 11: Busy (Status Reg bit S7-)

- » Status Line <u>input</u> set high when external device is busy and cannot accept data (stops flow of data to printer).
 - > Don't send any more data!

>Pin 10: ACK# (Acknowledge - Status Reg bit S6+)

- » Status Line <u>input</u> set low (~0.5 uS) when external device has properly received a data byte & is ready for more data.
- » If bit C4 =1 (IRQ Enable), will interrupt CPU when ACK# transitions 1 to 0. (Used with interrupt-driven device drivers)

>Pin 12: PE (Paper End - Status Reg bit S5+)

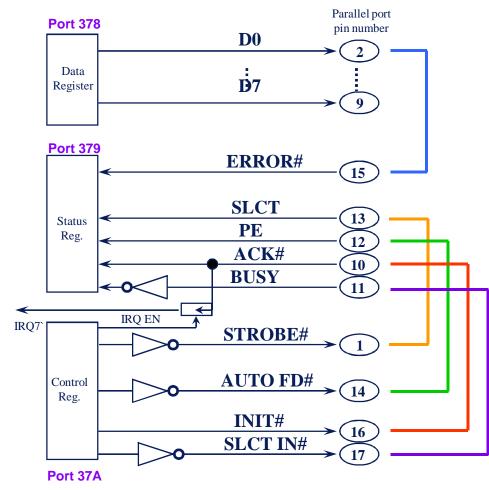
» Status Line <u>input</u> set high when external device has an "out of paper" or similar condition.

>Pin 13: SLCT (Select - Status Reg bit S4+)

» Status Line <u>input</u> set high when external device has been selected (i.e. is "on-line" or ready to receive data).

>Pin 15: Error# (Status Reg bit S3-)

» Status Line <u>input</u> set low when external device has encountered an error condition (e.g. printhead jammed).₁₄


- "Compatibility mode" data transfer to a printer is limited to 40-300 Kbps due to the multiple I/O cycles required for software handshaking.
 - » Write data to Data Register (e.g. 378h)
 - » Read Status (e.g. 379h) to check printer <u>not busy</u> (-S7 = 1).
 » e.g. Check for BUSY Pin 11 = 0 (-S7=1).
 - » If not busy, write to Control Register (e.g. 37Ah) to assert the STROBE# line (Pin 1 = 0).

> e.g. - Write "1" to Control Reg bit -C0 (STROBE#).

- » Wait approx. 5 microseconds, then write to Control Register (e.g 37Ah) to deassert the STROBE# line (Pin 1 = 1).
 - > e.g. Write "0" to Control Reg bit -C0 (STROBE#).
- » Note: EPP & ECP ports increase throughput by using hardware instead of software to check Busy & Strobe.

- A PASSIVE LOOPBACK CONNECTOR is a connector on which <u>some of the output pins have been wire</u> <u>connected to some of the input pins</u> so that when placed on the board's parallel port connector, data sent out is received back by the same port.
 - Note: Some tests also require an active loopback (has an ASIC that interfaces a DRAM chip to the parallel port) and can operate in the parallel port's compatible, PS/2, EPP and ECP modes.
 - » The circuit has two parts, the IFICS ID and memory.
 - > The memory section is used for writing and reading data in selected modes.
 - > These tests transfer a block of data to DRAM and reads it back in each supported mode of operation.

A common parallel loopback is a male 25-pin D-sub connector with the following pins wired together:

PRTD0 (pin 2) - (pin 15) ERROR#: > Reg D0 to S3 **STROBE# (pin 1) - (pin 13) SLCT:** Reg -C0 to S4 AUTOFD#(pin 14) - (pin 12) PE: Reg -C1 to S5 INIT# (pin 16) - (pin 10) ACK#: Reg C2 to S6 **SLCTIN# (pin 17) - (pin 11) BUSY:** > Reg -C3 to -S7

- If write 01 to 378h & 0C to 37Ah, then read FF at port 379
 >0000 0001 and 0000 1100 -> 1111 1111
- If write 00 to 378h & 03 to 37Ah, then read 07 at port 379
 >0000 0000 and 0000 0011 -> 0000 0111

		7	6	5	4	3	2	1	0
Port 378	Data	Х	Х	Х	Х	Х	Х	Х	- X
Port 379	Status	-X_	Χ –	Χ_	Χ_	Χ -	-	-	-
Port 37A	Control	-	-	-		- - X	- X	X	 X

PRTD0 (pin 2) - (pin 15) ERROR: STROBE (pin 1) - (pin 13) SLCT: AUTOFD (pin 14) - (pin 12) PE: INIT (pin 16) - (pin 10) ACK: SLCTIN (pin 17) - (pin 11) BUSY:
 Reg
 D0 to S3

 Reg
 -C0 to S4

 Reg
 -C1 to S5

 Reg
 C2 to S6

 Reg
 -C3 to -S7

- A more thorough loopback connector can test all 17 input & output lines of the port at the same time.
 - > An example of such a loopback would have the following pins wired together:
 - > PRTD0 (pin 2) (pin 1) STROBE*
 - > PRTD1 (pin 3) (pin 10) ACK*
 - > PRTD2 (pin 4) (pin 11) BUSY
 - > PRTD3 (pin 5) (pin 12) PE
 - > PRTD4 (pin 6) (pin 13) SLCT
 - > PRTD5 (pin 7) (pin 14) AUTOFD*
 - > PRTD6 (pin 8) (pin 15) ERROR* and (pin 17) SLCTIN*
 - > PRTD7 (pin 9) (pin 16) INIT*

- The IFICS loopback is a small PC board attached to the LPT (printer) port of the UUT.
 - >The IFICS cable/board assembly is a factory test assembly containing active components and jumpers.
- The purpose of the IFICS Loopback is to identify the station ID.
 - >Test software will read jumper information and report it.
 - The jumpers are set to unique addresses within the same server.
 - » IFICS ID setting: There are 8 bit settings, each bit is either a high or a low. The default is a high if a jumper is not used.
 - Note: The IFICS loopback connector is required for the Display IFICS Loopback Value utility.
 ²⁰

Parallel Port - Security keys

- Security keys, or dongles, are a form of copy protection that often uses the parallel port.
 - Some software (usually expensive, specialized applications) includes a security key that you must plug into the parallel port in order to run the software.
 - This key is a small device with a male D-sub connector on one end, and a female D-sub on the other end (to connect the printer) which may contain active devices.
 - The software communicates with the key, which contains a code that the software recognizes and the key usually doesn't use any conventional handshaking signals.
 - » The copy protection software writes various patterns to the data lines without ever pulsing the Strobe# line so the printer should ignore the data passed through.

Parallel Port BIOS Support

- Parallel port support by the ROM BIOS is limited.
 - >Call INT 17h with AH=0 to print a character.
 - » AL= Character, DX = Printer to be used (0-2)
 - » BIOS maintains a time-out counter for each printer port.
 - > Times out if the character cannot be written.
 - >Call INT 17h with AH=1 to initialize the printer.
 - » Writes 0Ch to the Ctrl Reg Asserts SLCT_IN# & INIT#
 - » Reads the Status Registers.
 - >Call INT 17h with AH=2 to get printer port status.
 - » e.g. Error (Parallel pin 15 ERROR*)
 - » e.g. Printer selected/on-line (Parallel pin 13 SLCT)

Parallel Port BIOS Support

- IRQ7 (LPT1) or IRQ5 (LPT2): May be generated to indicate when the printer becomes ready.
 - Many printers do not generate this interrupt, and it's usually not enabled.
 - Historically there is no ROM BIOS support for hardware interrupt-driven parallel support operation, but some O/Ss & Parallel Port transfer programs use it.
 - » Note that the 8259 PIC itself generates an interrupt corresponding to IRQ7 for spurious/phantom Interrupts.
 - > The PIC returns the Type code for IRQ7 (Type 0Fh) if a noise spike or error caused the interrupt (IRQ input did not stay high until after the first INTA cycle).
 - > IRQ7 ISR should check if bit 7 is set in the PIC In Service Reg to see if it is real interrupt or a phantom interrupt.
 - > If a phantom interrupt, the ISR just executes a return.

- The "IEEE Std. 1284-1994 Standard Signaling Method for a Bi-directional Parallel Peripheral Interface for Personal Computers" is fully backward compatible with all existing parallel port peripherals and printers.
 - >IEEE Std. 1284 provides for high speed bi-directional communication between the PC and an external peripheral that can communicate 50-100 times faster that the original parallel port.
 - The 1284 standard defines 5 modes of data transfer (Compatibly, Nibble, Byte, EPP, & ECP)
 - » Each mode provides a method of transferring data in either the forward direction (PC to peripheral), reverse direction (peripheral to PC) or Bi-directional data transfer (half duplex).

• IEEE 1284 modes - Forward direction only:

- >1) Compatibility Mode: "Centronics" or standard mode
 - » It is commonly called the "Centronics" mode and is the method utilized with the SPP (Standard Parallel Port).
 - » This mode defines the protocol used by most PCs to transfer data to a printer.
 - > This mode provides backward compatibility with the huge base of installed printers and peripherals.
 - » The bandwidth capabilities of the port (~150K bytes per second) is sufficient for communicating with dot matrix and many older laser printers, but is a limitation when communicating with removable disk drives, the newest generation of laser printers, etc.

• IEEE 1284 modes - Reverse direction only:

>2) Nibble Mode:.

- » Transfers 4 bits at a time (a nibble) using <u>Status Lines</u> for data.
 - > Busy (D3,D7); PE (D2,D6); Select (D1,D5); Error (D0,D4)
 - > To send an entire byte to the PC, 2 cycles are required using the Nibble mode.
- » The Nibble mode is the most common way to get reverse channel data from a printer or peripheral.

> Transfer rates ~ 50K bytes per second (SLOWEST).

» The bits are not conveniently packed into the byte defined in the Status Register, so software must manipulate the bits.

• IEEE 1284 modes - Bi-directional

- >3) Byte Mode: 8 bits at a time using data lines.
 - » Added the capability to disable the drivers used for driving the data lines, and allowed the data port to become an input read data port.
 - Control Reg Bit C5 added to determine direction. When C5=1, the data port is effectively an input port.
 - » Enables a peripheral to send an entire byte to the PC in one data transfer cycle using 8 data lines, rather than the 2 cycles required using the Nibble mode.
 - » Introduced on IBM PS/2 -- "PS/2-type" has come to refer to any parallel port that has a bi-directional data port but doesn't support EPP/ECP modes.

• IEEE 1284 modes - Bi-directional

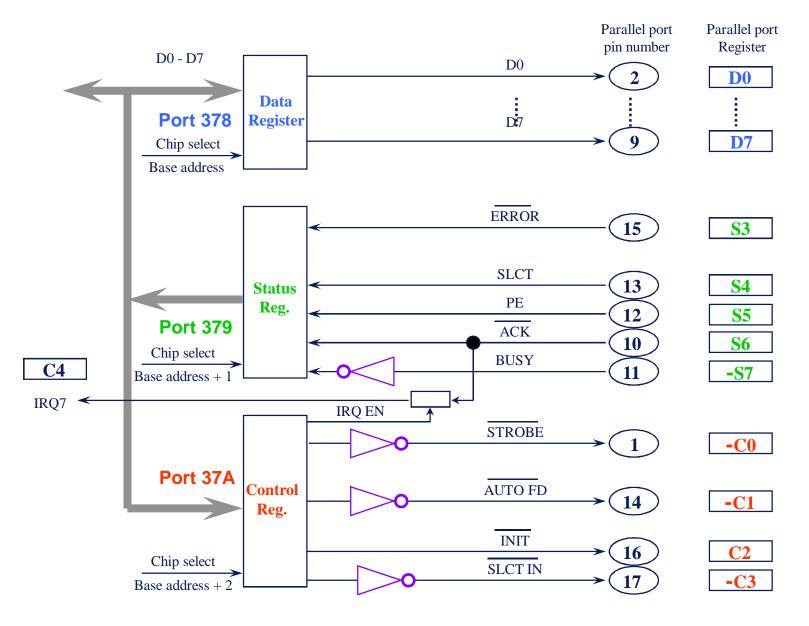
- >4) EPP: Enhanced Parallel Port used primarily by non-printer peripherals: CD ROM, tape drives, etc.
 - » Developed by Intel, Zenith, & Xircom in 1991.
 - » Implemented with special hardware on the motherboard
 - » EPP adds 5 regs at <u>base addr+ 3</u> through <u>base addr+7</u>.
 - > The first 3 registers are exactly the same as the SPP Regs.
 - > For a base address of 378h, EPP registers at 37Bh-37Fh
 - Base + 3 = Address Port; Base + 4 = Data Port
 - » EPP mode allows multiple peripherals on the same port.
 - > Tailored to support portable PC peripherals: hard disks, tape backup units, CD-ROM drives, network adapters, etc.
 - > EPP is effectively an extension of the system bus.

• IEEE 1284 modes - Bi-directional

>4) EPP: Enhanced Parallel Port - (Cont.)

» An EPP can switch directions quickly, and is efficient when used devices that transfer data in both directions.

> The pins function according to the EPP protocol.


- » The ability to use a single instruction to transfer data enables EPP mode to transfer data at ISA bus speeds.
 - > Transfer rates from 500K to 2M bytes per second.
 - The handshaking for EPP is performed by hardware so that data is transferred in a single I/O cycle.
 - > Originally slower software handshaking was used for parallel ports (read busy bit , write strobe bit, etc)
- » EPP mode may use interrupts.
- » An EPP can also emulate an SPP.

- IEEE 1284 modes Bi-directional:
 - >5) ECP: Extended Capability Port used primarily by the new generation of printers/scanners and other peripherals that transfer large bi-directional data blocks.
 - » Developed by Microsoft & HP in 1992.
 - » Special hardware implements ECP on the motherboard.
 > The ECP is backwards compatible to the SPP and EPP
 - » The first 3 registers are the same as the SPP Regs.
 - » ECP adds 3 registers at <u>base addr+400h</u> through <u>base</u> <u>addr+402h</u> (uses A10 address line).
 - > For base address 378h, ECP registers are at 778h-77Ah.
 - > "Aliasing" expands the number of registers available, and still maintains compatibility with older ISA cards that only decode 10 address bits (A0-A9).

• IEEE 1284 modes - Bi-directional:

>5) ECP: Extended Capability Port - (Cont.)

- » The ECP is bi-directional, can transfer data at ISA-bus speeds, has buffers, and supports DMA transfers.
 - ECP is meant to be driven by DMA rather than use explicit I/O instructions like EPP (e.g. DMA Channel 3)
 - > ECP handshake is controlled by hardware not software.
 - > ECP mode may use interrupts (e.g. IRQ 7).
- » ECP "channel addressing" accesses multiple logical devices within a single physical device such as a fax/printer/modem.
 - » e.g.- Could receive data from the modem data device while the printer data channel is busy processing a print image.
- » Other features of ECP are a 16-byte FIFO and real time data compression up to 64:1.

32

• Functions of Standard & Bi-directional Parallel Ports.

- Contains no intelligence and is just a set of latches and buffers together with some address decoding circuitry.
- Software outputs instructions to set & reset bits in the latches--these are used to generate all control signals.
- The parallel port in the original IBM PC is sometimes called the SPP, for Standard Parallel Port.

• Parallel Port I/O addresses.

- » 278h or 378h or 3BCh Base Addresses.
- The 1st address (e.g. 378h) is the port's <u>base address</u>, also called the <u>Data register</u> or just the <u>port address</u>.
- >The 2nd address (e.g. 379h) is the port's Status register.
- >The 3rd address (e.g. 37Ah) is the <u>Control register</u>.

• Standard Parallel Port registers & connector signals.

>Two output registers

- » Output to 278/378/3BC Hex (Data Reg)
- » Output to 27A/37A/3BE Hex (Control Reg)
- >Three input registers
 - » Input from 279/379/3BD Hex (Status Reg) READ ONLY
 - » Input from 278/378/3BC Hex (Data Reg) READ BACK
 - » Input from 27A/37A/3BE Hex (Control Reg) READ BACK
- >I/O available through a 25-pin, D-type female connector.
- The use of loopbacks for testing the SPP.
 - Passive Loopback: Connector on which some output pins have been wire connected to some input pins.

• Parallel Port BIOS support.

INT 17h: AH=0 to print a character; AH=1 to initialize the printer; AH=2 to get printer port status.

• IEEE-1284 standard & EPP/ECP Bi-directional modes.

- Compatibility Mode: "Centronics" or standard mode.
- >Nibble Mode: 4 bits at a time using status lines for data.
- >Byte Mode: 8 bits at a time using data lines.
- EPP: Enhanced Parallel Port used primarily by nonprinter peripherals: CD ROM, tape drives, etc.
- ECP: Extended Capability Port used primarily by the new generation of printers/scanners and other peripherals that transfer large bi-directional data blocks.