Data and Computer Communications

Data Encoding

Encoding Techniques

Digital data, digital signal
Analog data, digital signal
Digital data, analog signal
Analog data, analog signal

Digital Data, Digital Signal

☑ Discrete, discontinuous voltage pulses

- Each pulse is a signal element
- Binary data encoded into signal elements

Terms (1)

₩Unipolar

△All signal elements have same sign

<mark>₩</mark> Polar

○ One logic state represented by positive voltage the other by negative voltage

🖁 Data rate

□ Rate of data transmission in bits per second

Duration or length of a bit

△Time taken for transmitter to emit the bit

Terms (2)

#Modulation rate

☐ Rate at which the signal level changes

- Measured in baud = signal elements per second
- # Mark and Space

☐ Binary 1 and Binary 0 respectively

Interpreting Signals

%Need to know

□ Timing of bits - when they start and end

Signal levels

- # Factors affecting successful interpreting of
 signals
 - ☐Signal to noise ratio
 - ☐Data rate
 - Bandwidth

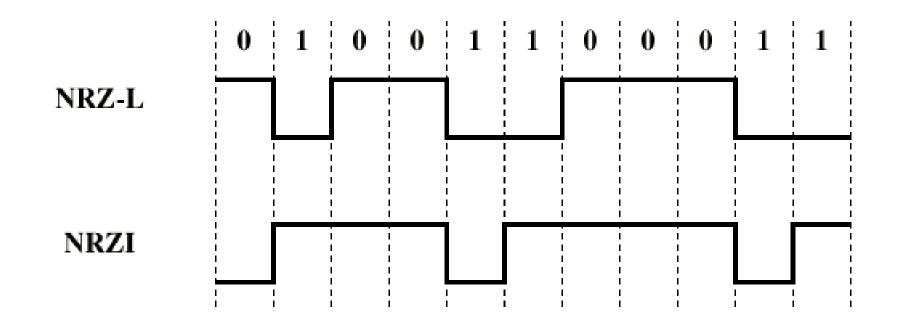
Comparison of Encoding Schemes (1)

#Signal Spectrum

- △ Lack of high frequencies reduces required bandwidth
- Lack of dc component allows ac coupling via transformer, providing isolation
- Concentrate power in the middle of the bandwidth

₩ Clocking

- ☐Synchronizing transmitter and receiver
- External clock
- Sync mechanism based on signal


Comparison of Encoding Schemes (2)

- **#**Error detection
 - □Can be built in to signal encoding
- **#**Signal interference and noise immunity
 - ☐Some codes are better than others
- - ➡Higher signal rate (& thus data rate) lead to higher costs
 - Some codes require signal rate greater than data rate

Nonreturn to Zero Inverted

- **#**Nonreturn to zero inverted on ones
- **#**Constant voltage pulse for duration of bit
- Contract and the second second
- #Transition (low to high or high to low) denotes a binary 1
- **X**No transition denotes binary 0
- **#**An example of differential encoding

NRZ

Differential Encoding

Data represented by changes rather than levels
More reliable detection of transition rather than level

In complex transmission layouts it is easy to
lose sense of polarity

Modulation Rate

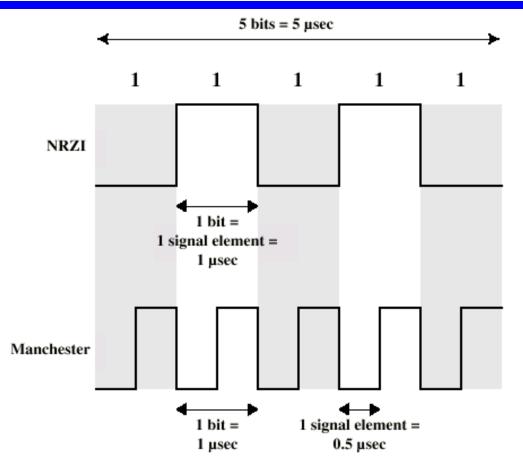
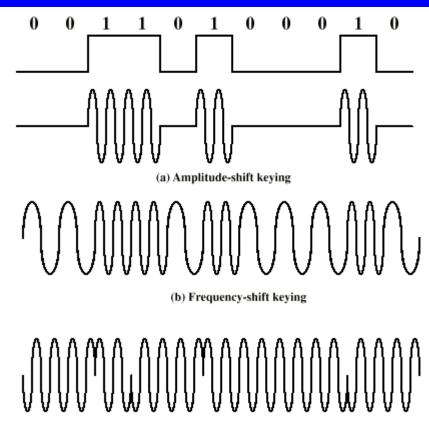



Figure 5.5 A Stream of Binary Ones at 1 Mbps

Digital Data, Analog Signal

Public telephone system
300Hz to 3400Hz
Use modem (modulator-demodulator)
Amplitude shift keying (ASK)
Frequency shift keying (FSK)
Phase shift keying (PK)

Modulation Techniques

(c) Phase-shift keying

Amplitude Shift Keying

- Horizontal Strain St
- ₿Usually, one amplitude is zero
 - ☑i.e. presence and absence of carrier is used
- **#**Susceptible to sudden gain changes
- **#**Inefficient
- **∺**Up to 1200bps on voice grade lines
- **∺**Used over optical fiber

Frequency Shift Keying

% Values represented by different frequencies (near carrier)

₭ Less susceptible to error than ASK

₩Up to 1200bps on voice grade lines

High frequency radio

#Even higher frequency on LANs using co-ax

FSK on Voice Grade Line

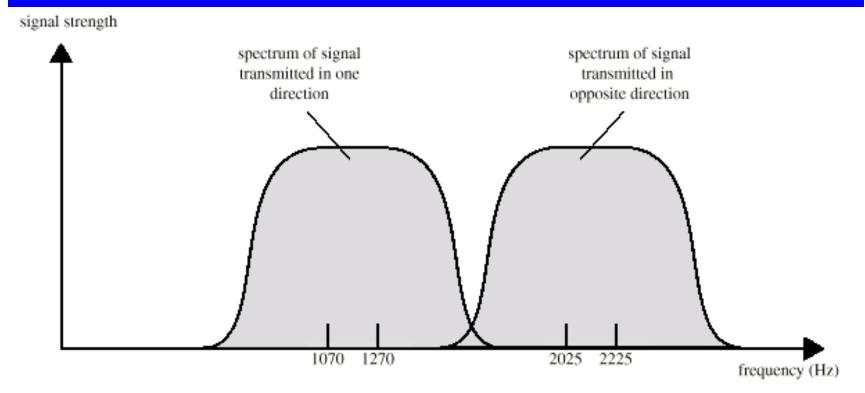


Figure 5.8 Full-Duplex FSK Transmission on a Voice-Grade Line

Phase Shift Keying

#Phase of carrier signal is shifted to represent
 data

- - △Phase shifted relative to previous transmission rather than some reference signal

Quadrature PSK

- Hore efficient use by each signal element representing more than one bit
 - \bigtriangleup e.g. shifts of $\pi/2$ (90°)
 - ► Each element represents two bits
 - Can use 8 phase angles and have more than one amplitude
 - ☑9600bps modem use 12 angles , four of which have two amplitudes

Performance of Digital to Analog Modulation Schemes

#Bandwidth

ASK and PSK bandwidth directly related to bit rate

FSK bandwidth related to data rate for lower frequencies, but to offset of modulated frequency from carrier at high frequencies

☑(See Stallings for math)

In the presence of noise, bit error rate of PSK and QPSK are about 3dB superior to ASK and FSK

Analog Data, Digital Signal

₩ Digitization

- Conversion of analog data into digital data
- ☐ Digital data can then be transmitted using NRZ-L
- □Digital data can then be transmitted using code other than NRZ-L
- ☑ Digital data can then be converted to analog signal
- Analog to digital conversion done using a codec
- ☐Pulse code modulation
- Delta modulation

Pulse Code Modulation(PCM) (1)

If a signal is sampled at regular intervals at a rate higher than twice the highest signal frequency, the samples contain all the information of the original signal

Proof - Stallings appendix 4A)

- ₿ Voice data limited to below 4000Hz
- **#**Require 8000 sample per second
- #Analog samples (Pulse Amplitude Modulation, PAM)
- **#**Each sample assigned digital value

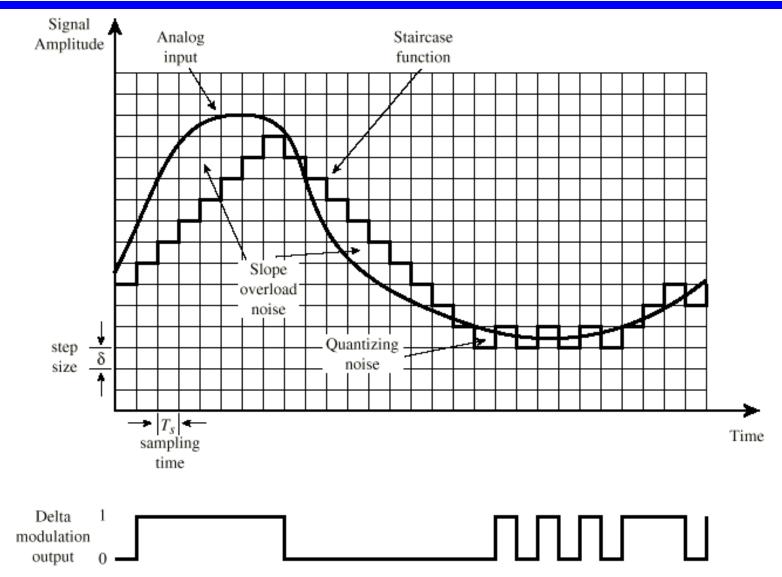
Pulse Code Modulation(PCM) (2)

¥4 bit system gives 16 levels

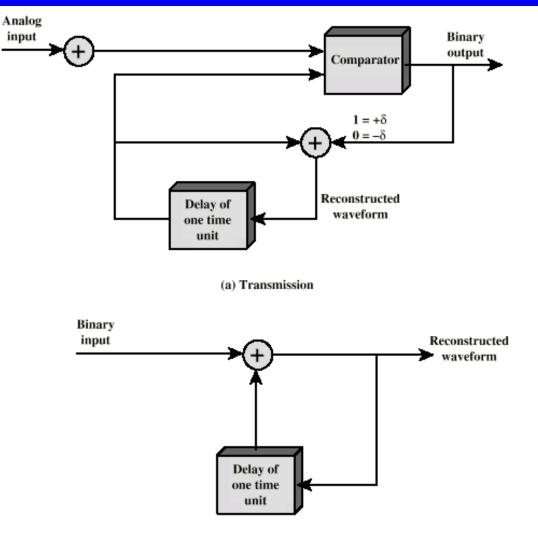
#Quantized

- △Quantizing error or noise
- Approximations mean it is impossible to recover original exactly
- **₩**8 bit sample gives 256 levels

Cuality comparable with analog transmission
8000 samples per second of 8 bits each gives
64kbps


Nonlinear Encoding

#Quantization levels not evenly spaced #Reduces overall signal distortion #Can also be done by companding


Delta Modulation

- #Analog input is approximated by a staircase
 function
- Move up or down one level (δ) at each sample interval
- **#**Binary behavior
 - ☑ Function moves up or down at each sample interval

Delta Modulation - example

Delta Modulation - Operation

(b) Reception

Delta Modulation - Performance

#Good voice reproduction

△PCM - 128 levels (7 bit)

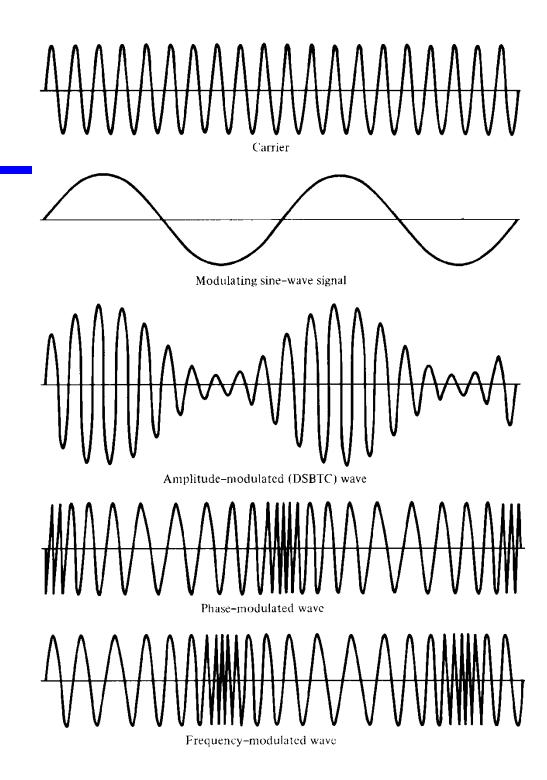
✓Voice bandwidth 4khz

Should be 8000 x 7 = 56kbps for PCM

₭ Data compression can improve on this

△e.g. Interframe coding techniques for video

Analog Data, Analog Signals


#Why modulate analog signals?

Higher frequency can give more efficient transmission

Permits frequency division multiplexing (chapter 8)

- **#**Types of modulation
 - Amplitude
 - ☑ Frequency
 - △Phase

Analog Modulation

Spread Spectrum

- ₭ Analog or digital data
- **#**Analog signal
- # Spread data over wide bandwidth
- **#**Makes jamming and interception harder
- **#**Frequency hoping
 - Signal broadcast over seemingly random series of frequencies
- **#**Direct Sequence
 - Each bit is represented by multiple bits in transmitted signal
 - Chipping code