
Fixed-point design



Overview
• Introduction
• Numeric representation
• Simulation methods for floating to fixed point 

conversion
• Analytical methods



Fixed-Point Design
• Digital signal processing algorithms

– Often developed in floating point
– Later mapped into fixed point for digital 

hardware realization

• Fixed-point digital hardware
– Lower area
– Lower power

– Lower per unit production cost
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Fixed-Point Design

• Float-to-fixed point conversion required to target
– ASIC and fixed-point digital signal processor core
– FPGA and fixed-point microprocessor core

• All variables have to be annotated manually
– Avoid overflow
– Minimize quantization effects
– Find optimum wordlength

• Manual process supported by simulation
– Time-consuming
– Error prone



Fixed-Point Representation 
• Fixed point type

– Wordlength
– Integer wordlength

• Quantization modes
– Round
– Truncation

• Overflow modes
– Saturation
– Saturation to zero
– Wrap-around
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Tools for Fixed-Point Simulation
• gFix (Seoul National University) 

– Using C++, operator overloading
• Simulink (Mathworks)

– Fixed-point block set 4.0
• SPW (Cadence)

– Hardware design system
• CoCentric (Synopsys)

– Fixed-point designer

gFix a(12,1);
gFix b(12,1);
gFix c(13,2);
c = a + b;

float a;
float b;
float c;
c = a + b;

Wordlengths determined manually
Wordlength optimization tool needed



Optimum Wordlength
• Longer wordlength

– May improve application
performance

– Increases hardware cost
• Shorter wordlength

– May increase quantization errors
and overflows

– Reduces hardware cost
• Optimum wordlength

– Maximize application performance
or minimize quantization error

– Minimize hardware cost

Wordlength (w)

Cost c(w)Distortion d(w)
[1/performance]

Optimum
wordlength



Wordlength Optimization Approach
• Analytical approach

– Quantization error model
– For feedback systems, instability and limit cycles can occur
– Difficult to develop analytical quantization error model of adaptive or 

non-linear systems

• Simulation-based approach
– Wordlengths chosen while observing error criteria
– Repeated until wordlengths converge
– Long simulation time



Overview
• Introduction
• Numeric representation
• Simulation methods for floating to fixed point 

conversion
• Analytical methods



Number representation
Matlab examples
• Numeric circle
• fi Basics
• fi Binary Point Scaling 



Fi type



Fi object



Fi Object
• Notation
• Multiplication
• Multiplication with KeepMSB Mode
• Addition
• Addition with KeepLsb Mode
• Numerictype
• fimath



Overview
• Introduction
• Numeric representation
• Simulation methods for floating to fixed point 

conversion
• Analytical methods



Data-range propagation
y1=2.1x1-1.8(x1+x2)=0.3x1-1.8x2
Input range: (-0.6 0.6)
Output range: (-1.26, 1.26)



Data-range propagation
Disadvantages
• Provide larger bounds on signal values than 

necessary 

Solution
• Simulation-based range estimation



Development of fixed point programs
• Toolbox gFix



Statistical characteristics of input signals

•



Implementation – range estimation



Result of the range estimator



Fixed point simulation



Operator overloading
•



Fixed-precision algorithm
•



Reducing the number of overflows in Matlab

1. Implement textbook algorithm in M. 

2. Verify with builtin floating-point in M. 

3. Convert to fixed-point in M and run with default settings. 

4. Override the fi object with 'double' data type to log min and max values. 

5. Use logged min and max values to set the fixed-point scaling. 

6. Validate the fixed-point solution. 

7. Convert M to C using Embedded MATLAB or Simulink to FPGA using 
Altera and Xilinx tools.



Matlab functions
• logreport
• fi_best_numeric_type_from_logs
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• Numeric representation
• Simulation methods for floating to fixed point 

conversion
• Analytical methods



Filter Implementation
• Finite word-length effects (fixed point implementation)

- Coefficient  quantization 
- Overflow & quantization in arithmetic operations

- scaling to prevent overflow
- quantization noise statistical modeling
- limit cycle oscillations



Coefficient Quantization
The coefficient quantization problem :

• Filter design in Matlab (e.g.) provides filter coefficients to 15 
decimal digits (such that filter meets specifications)

• For implementation, need to quantize coefficients to the word 
length used for the implementation.

• As a result, implemented filter may fail to meet specifications… ??

• PS: In present-day signal processors, this has become less of a problem 
(e.g. with 16 bits (=4 decimal digits) or 24 bits (=7 decimal digits) 
precision). In hardware design, with tight speed requirements, this is still a 
relevant problem. 



Coefficient Quantization
Coefficient quantization effect on pole locations :
-> tightly spaced poles (e.g. for narrow band filters) imply   

high sensitivity of pole locations to coefficient quantization
->  hence preference for low-order systems (parallel/cascade)

Example: Implementation of a band-pass IIR 12-order filter

Cascade structure with 16-bit coeff. Direct form with 16-bit coeff.



Coefficient Quantization
Coefficient quantization effect on pole locations :
• example : 2nd-order system (e.g. for cascade 

realization) 
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Coefficient Quantization
• example (continued) :

with 5 bits per coefficient, all possible pole positions are...

Low density of permissible pole locations at z=1, z=-1, hence 
problem for narrow-band LP and HP filters
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Coefficient Quantization
• example (continued) :

possible remedy: `coupled realization’
poles are                   where                are realized/quantized
hence permissible pole locations are (5 bits)
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Quantization of an FIR filter

• Transfer function ΔH(z)
• The effect of coefficient quantization to linear phase 



FIR filter example
• Passband attenuation 0.01, Radial frequency (0,0.4)
• Stopband attenuation 0.001, Radial frequency (0.4, )



FIR filter example – 16bits



FIR filter example - 8bits



Arithmetic Operations
Finite word-length effects in arithmetic operations:

• In linear filters, have to consider additions & 
multiplications

• Addition:
if, two B-bit numbers are added, the result has (B+1) bits.

• Multiplication:  
if a B1-bit number is multiplied by a B2-bit number, the 
result has (B1+B2-1) bits.                                                                                    
For instance, two B-bit numbers yield a (2B-1)-bit product

• Typically (especially so in an IIR (feedback) filter), the 
result of an addition/multiplication has to be 
represented again as a B’-bit number (e.g. B’=B). Hence 
have to get rid of either most significant bits or least 
significant bits…



Arithmetic Operations
• Option-1: Most significant bits

If the result is known to be upper bounded so that the most 
significant bit(s) is(are) always redundant, it(they) can be dropped, 
without loss of accuracy. 
This implies we have to monitor potential overflow, and introduce 
scaling strategy to avoid overflow.

• Option-2 : Least significant bits
Rounding/truncation/… to B’ bits introduces quantization noise. 
The effect of quantization noise is usually analyzed in a statistical   
manner. 
Quantization, however, is a deterministic non-linear effect, which 
may give rise to limit cycle oscillations.  



Scaling
The scaling problem:

• Finite word-length implementation implies maximum 
representable number. Whenever a signal (output or 
internal) exceeds this value, overflow occurs.

• Digital overflow may lead (e.g. in 2’s-complement 
arithmetic) to polarity reversal (instead of saturation 
such as in analog circuits), hence may be very harmful.

• Avoid overflow through proper signal scaling
• Scaled transfer function may be c*H(z) instead of H(z)  

(hence need proper tracing of scaling factors)



Scaling
Time domain scaling:
• Assume input signal is bounded in magnitude

(i.e. u-max is the largest number that can be represented  in the `words’ 
reserved for the input signal’) 

• Then output signal is bounded by

• To satisfy   
(i.e. y-max is the largest number that can be represented  in the `words’   
reserved for the output signal’) 

we have to scale H(z) to c.H(z), with
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Scaling

• Example:

• assume u[k] comes from 12-bit A/D-converter
• assume we use 16-bit arithmetic for y[k] & multiplier

• hence inputs u[k] have to be shifted by 
3 bits to the  right before entering the filter 
(=loss of accuracy!)
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Scaling
L2-scaling:   (`scaling in L2 sense’)
• Time-domain scaling is simple & guarantees that overflow will 

never occur, but often over-conservative (=too small c)

• If an `energy upper bound’ for the input signal is known

then L2-scaling uses

where 
…is an L2-norm         (this leads to larger c)
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Scaling
• So far considered scaling of H(z), i.e. transfer function 

from u[k] to y[k].  In fact we also need to consider 
overflow and scaling of each internal signal, i.e. scaling of 
transfer function from u[k] to each and every internal 
signal !                                                                          

• This requires quite some thinking…. 
(but doable)
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Scaling
• Something that may help: If 2’s-complement arithmetic is used, and if 

the sum of K numbers (K>2) is guaranteed not to overflow, then 
overflows in partial sums cancel out and do not affect the final 
result (similar to `modulo arithmetic’).

• Example:
if x1+x2+x3+x4 is guaranteed not to 
overflow, then if in (((x1+x2)+x3)+x4) 
the sum (x1+x2) overflows, this overflow 
can be ignored, without affecting the 
final result.

• As a result (1), in a direct form realization, 
eventually only 2 signals have to be 
considered in view of scaling :
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Scaling
• As a result (2), in a transposed direct form realization, eventually

only 1 signal has to be considered in view of scaling……….:

hence preference for transposed direct form over direct form.
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Quantization Noise
The quantization noise problem : 

• If two B-bit numbers are added (or multiplied), the result 
is a B+1 (or 2B-1) bit number. Rounding/truncation/… to 
(again) B bits, to get rid of the least significant bit(s) 
introduces quantization noise. 

• The effect of quantization noise is usually analyzed in a 
statistical manner. 

• Quantization, however, is a deterministic non-linear 
effect, which may give rise to limit cycle oscillations.    

• PS: Will focus on multiplications only. Assume additions are 
implemented with sufficient number of output bits, or are properly 
scaled, or…



Quantization Noise
Quantization mechanisms: 

Rounding                    Truncation                        Magnitude 
Truncation 

mean=0                            mean=(-0.5)LSB (biased!)      mean=0
variance=(1/12)LSB^2      variance=(1/12)LSB^2            variance=(1/6)LSB^2

input

probability

error

output



Quantization Noise
Statistical analysis based on the following assumptions :
- each quantization error is random, with uniform probability 

distribution function (see previous slide)
- quantization errors at the output of a given multiplier are 

uncorrelated/independent (=white noise assumption)
- quantization errors at the outputs of different multipliers are 

uncorrelated/independent (=independent sources assumption)

One noise source is inserted for each multiplier. 

Since the filter is linear filter the output noise generated by 
each noise source is added to the output signal.      



Quantization Noise
The effect on the output signal of noise generated at a 

particular point in the filter is computed as follows:
• noise is e[k].    noise mean & variance are 
• transfer function from from e[k] to filter output is G(z),g[k]              

(‘noise transfer function’)
• Noise mean at the output is

• Noise variance at the output is (remember L2-norm!)

Repeat procedure for each noise source…
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Quantization Noise
In a transposed direct realization all `noise transfer 

functions’ are equal (up to delay), hence all noise 
sources can be lumped into one equivalent source

etc...
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Quantization Noise
In a direct realization all noise sources can be lumped into 

two equivalent sources

etc...

e1[k]
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Quantization Noise
PS: Quantization noise of A/D-converters can be 

modeled/analyzed in a similar fashion. 
Noise transfer function is filter transfer function H(z).



Limit Cycles
Statistical analysis is simple/convenient, but quantization 

is truly a non-linear effect, and should be analyzed as a 
deterministic process. 

Though very difficult, such analysis may reveal odd 
behavior:

Example: y[k] = -0.625.y[k-1]+u[k]
4-bit rounding arithmetic
input u[k]=0, y[0]=3/8
output y[k] = 3/8, -1/4, 1/8, -1/8, 1/8, -1/8, 1/8, -1/8, 1/8,..

Oscillations in the absence of input (u[k]=0) are called 
`zero-input limit cycle oscillations’.



Limit Cycles
Example: y[k] = -0.625.y[k-1]+u[k]

4-bit truncation (instead of rounding)
input u[k]=0, y[0]=3/8
output y[k] = 3/8, -1/4, 1/8, 0, 0, 0,.. (no limit cycle!)

Example: y[k] = 0.625.y[k-1]+u[k]
4-bit rounding
input u[k]=0, y[0]=3/8
output y[k] = 3/8, 1/4, 1/8, 1/8, 1/8, 1/8,..

Example: y[k] = 0.625.y[k-1]+u[k]
4-bit truncation
input u[k]=0, y[0]=-3/8
output y[k] = -3/8, -1/4, -1/8, -1/8, -1/8, -1/8,..

Conclusion: weird, weird, weird,… !



Limit Cycles
Limit cycle oscillations are clearly unwanted (e.g. may be 

audible in speech/audio applications) 
Limit cycle oscillations can only appear if the filter has 

feedback. Hence FIR filters cannot have limit cycle 
oscillations.

Mathematical analysis is very difficult.
Truncation often helps to avoid limit cycles (e.g. magnitude 

truncation, where absolute value of quantizer output is 
never larger than absolute value of quantizer input 
(`passive quantizer’)).

Some filter structures can be made limit cycle free, e.g. 
coupled realization, orthogonal filters (see below).


