Fixed-point design

Overview

Introduction
Numeric representation

Simulation methods for floating to fixed point
conversion

Analytical methods

Fixed-Point Design

 Digital signal processing algorithms
— Often developed in floating point

— Later mapped into fixed point for digital
hardware realization

* Fixed-point digital hardware
— Lower area
— Lower power

— Lower per unit production cost

Idea

v

Floating-Point Algorithm

v

Range Estimation

v

Quantization

v

Fixed-Point Algorithm

Code Generation

v

Target System

EIER!

|8A87 wiylioBy

uoneuawsajduwy

Fixed-Point Design

* Float-to-fixed point conversion required to target
— ASIC and fixed-point digital signal processor core
— FPGA and fixed-point microprocessor core

« All variables have to be annotated manually
— Avoid overflow
— Minimize quantization effects
— Find optimum wordlength
 Manual process supported by simulation
— Time-consuming
— Error prone

Fixed-Point Representation

* Fixed point type

— Wordlength
— Integer wordlength Wordlength
 Quantization modes A SystemC format
WWW.Systemc.org
— Round [\
— Truncation . X xlx X | X
e QOverflow modes Wordlength
— Saturation LYJ A
_ Saturation to zero Integer wordlength [
— Wrap-around i ¥ [x [x| x

LYJ

Integer wordlength = -2

Tools for Fixed-Point Simulation

gFix (Seoul National University)
— Using C++, operator overloading
Simulink (Mathworks)
— Fixed-point block set 4.0
SPW (Cadence)
— Hardware design system
CoCentric (Synopsys)
— Fixed-point designer

O

float a;
float b;
float c;
c=a+b;

| gFix b(12,1);

=] fixe d_sum

File Edit Yew Simulation Format Tools Help

= EHE

=

| gFix ¢(13,2);

gFix a(12,1);

c=a+b;

4 Mormal -

Ready

100%

Wordlengths determined manually
Wordlength optimization tool needed

wpe [e.a. sfid16). uint(8). float'single')k

lus (Slope. .9, 273 or [Slope Bias]. 5.9, [1.253])

Optimum Wordlength

« Longer wordlength
— May improve application _
performance Optimum
— Increases hardware cost wordlength

e Shorter wordlength

— May increase quantization errors \ Distortion d(w) Cost c(w)
and overflows [1/performance]

— Reduces hardware cost

e Optimum wordlength

— Maximize application performance
or minimize quantization error

— Minimize hardware cost

N

Wordlength (w)

Wordlength Optimization Approach

Analytical approach
— Quantization error model
— For feedback systems, instability and limit cycles can occur
— Difficult to develop analytical quantization error model of adaptive or
non-linear systems
Simulation-based approach
— Wordlengths chosen while observing error criteria
— Repeated until wordlengths converge
— Long simulation time

Overview

Introduction
Numeric representation

Simulation methods for floating to fixed point
conversion

Analytical methods

Number representation

Matlab examples
 Numeric circle

 fi Basics

 fi Binary Point Scaling

FI type

= Integer arithmetic with a fixed number of fractional
digits
>> a=fi(pi, true, 8, 5);
>> bin(a)
0 1 1. O 0 1 0 1
S 2 142 A4/44 1,8 /06 1732

>> double(a)
3.15625

FI object

»»> a = Tilpi)
a = _
3.1416015625 [data
DataTypeMode: Fixed-point: binaﬁ} point scaling
Signed: true i
WordLength: 16 ~ humerictype
FractionLength: 13
-
RoundMode: nearest .
OverflonwMode: saturate
ProductMode: FullPrecision |
MaxProductWordLength: 128 fimath
SumMode: FullPrecision
MaxSumWorcdLength: 128
CastBeforeSum: true

FI Object

Notation

Multiplication

Multiplication with KeepMSB Mode
Addition

Addition with KeepLsb Mode
Numerictype

fimath

Overview

Introduction
Numeric representation

Simulation methods for floating to fixed point
conversion

Analytical methods

Data-range propagation

y1=2.1x1-1.8(x1+x2)=0.3x1-1.8x2
Input range: (-0.6 0.6)
Output range: (-1.26, 1.26)

it : q
|) _

(6,0.6) . (=3.42,3.42)
(-0.6 6) o) >
(-0.6,0.6) _ (-1.26,1.26) + i
(ez r’][I':

(+ Q=6

| (-2.16,2.16)
(-1.]) =
L ‘ i (16 16
S (-2.16,2.16)
(~C B ‘
(—2.16,2 _16Y
Ir lJ (r] - e L .,
6,0.6) 0.6) (-0.96,0.96) (=3.12,3.1
: i p 35129
() 1.6 s

Data-range propagation

Disadvantages

* Provide larger bounds on signal values than
necessary

Solution
e Simulation-based range estimation

Development of fixed point programs
e Toolbox gFix

C or C++ programming
using Floating—point arithmetic

1

Insert range estimation directives
fo variable declaration statements

| ¢

. Range Estimator]

l

Insert fixed-point simulation directives
to variable declaration statements

l

‘ Fixed-point Simulator

Statistical characteristics of input signals

; fz(x)

H=|u|+nxo, it o k.

fz(z)

. R = Reggr+ g

T

Implementation — range estimation

class fSig

-{ i

private:
double Data;
double Sum;
double Sum? ;
double Sumd;
doubla Sumd :
double AMax;
long SumC;

public

;;;;;;

fSigh operator = (const fSigk);

fSigk operator = (double);

friend double operator + (const f£Sigk, const fSigh);
friend double operator + (const fSigk, double);
friend double operator - (const £Sigk, const f3igh);
friend double operator - (comst f£Sigk, double);
friend double operator * {const fSigk, const fSigk);
friend double operator * (comst fSigk, double);
friend double operator / (comst £S5igk, const f3igh);
friend double operator / (comnst £Sigk, double);
friend short operator == (const fSigk, const f£Sigk);
friend short operator == (const fSigk, double)};
friend short cperator != (const fSigk, comst f5igk);
friend short operator != (const fSigk, double);
friend short operator > (comst £fSigk, const fSighk);
friend short operator > (comst f3igk, double);
friend short operator < (const f3igk, const fSighk);
friend short operator < (const fSigk, double);

Result of the range estimator

Statistics:

VarName Mean StdDev Skewness Kurtosis R99.9) R100% Update
iirl/Ydly -0.1133 +1.3076 +0.0220 -0.02068 +4.2638 +4.4214 3001
iirl/Yout —0.1134 +1.3078 +0.0220 -0.0268 +4.2638 +4.4214 3000

Integer wordlengths:

VarName Range IWL
iirl/Ydly +5.309891 +3
iirl/Yout +5.309515 +3

Save the statistical results? [¥/n]
Filename? iirl.sta

Fixed point simulation

el s EFjﬁ

Intcagsr m; S mEantissa
short 1wl ; S integer word-length
Ehort wk : FF rtotal word-=length
char FoOpTeSant o SR ar, fuwt
char gaturatiocom; S5 5 o, Tol
char round; OO o, Yt

Poblic:

S oconstructors

EFdawd]l

HFi:{&hurL wlen, Short iwlam, char «=fmtl ;
EFix{douable 4, short wlen, short iwlen, char =Ff=t];

S assignoent oparators
EFizlk oparator = (gFixzxk xJ;
EFix® operator = {doubla 4z
A bhasic oparators

friamd gFix opearator + (EFi=k =, gFix& ¥l
friend gFix oparator — (gFi=k =, gFi=z& ¥
friend gFix oparator « {(gFi=sk =, pgFizk]
friand gFix operataor / (gFix& =, gFizk)
friend gFizx operator << [(gFix& =, shore b
friend gFix opearator >> [(gFixk =, =shore b

¥:
¥

Y assignment Dased operataorsa
EFixk oparator += {(gFixk xiz
gEFixk cparator —= (gFix& =)
EFixk oparator += {gFixk];

S5 relational operators

friend short operator == [(FFixk x, gFixk ¥
friosnd short operator != {(pFixk x, gFixk ¥
friemd ghort operator » {gFixk =, gFizk ¥

b e
LER EIUT

Y migcellanscns OpeTATOTS
friend istreamk ocperator >> {istream =, gFixd =) ;
friend ostreanik operator << {ostreandk =, gFiz& =} ;

Operator overloading

gFix operator = (const gFix& x, const gFixk y)
/{ assume that
S result.wl = x.wl + y.wl - 1
if result.iwl = x.ivl + y.ivl
short iwlen, wlen;
Integer I;

wlen = x.wl + y.wl - 1;

if{ wlen > MAXWL } wlen = MAXWL;
iwlen = x.awl + y.iwl;

I =x.M* vy M;

return gFix{I,wlen,iwlen};

Fixed-precision algorithm

void
iirl{short argc, char =argv[]}
i

gFix Xin(12,0);

gFix Yout{16,3);

gFix Ydly(16,3);

gFix Coeff(10,0};

Coeff = 0.9;

Ydly = 0.3

for(1 = 0; 1 < 1000; i++) {
infile »> ¥in ;
Yout = Coaff *= Ydly + Xim ;
Ydly = Yout ;
outfile << Yout << "‘\n':

Reducing the number of overflows in Matlab

1. Implement textbook algorithm in M.

2. Verify with builtin floating-point in M.

3. Convert to fixed-point in M and run with default settings.

4. Override the fi object with 'double’ data type to log min and max values.
5. Use logged min and max values to set the fixed-point scaling.

6. Validate the fixed-point solution.

7. Convert M to C using Embedded MATLAB or Simulink to FPGA using
Altera and Xilinx tools.

Matlab functions

* logreport
e fl_best numeric_type from logs

Overview

Introduction
Numeric representation

Simulation methods for floating to fixed point
conversion

Analytical methods

Filter Implementation

Finite Word-length effects (fixed point implementation)
- Coefficient quantization
- Overflow & quantization in arithmetic operations
- scaling to prevent overflow
- guantization noise statistical modeling
- limit cycle oscillations

Coefficient Quantization

The coefficient gquantization problem :

» Filter design in Matlab (e.g.) provides filter coefficients to 15
decimal digits (such that filter meets specifications)

 For implementation, need to quantize coefficients to the word
length used for the implementation.

 As aresult, implemented filter may fail to meet specifications... ??

« PS: In present-day signal processors, this has become less of a problem
(e.g. with 16 bits (=4 decimal digits) or 24 bits (=7 decimal digits)
precision). In hardware design, with tight speed requirements, this is still a
relevant problem.

Coefficient Quantization

Coefficient quantization effect on pole locations :

-> tightly spaced poles (e.g. for narrow band filters) imply
high sensitivity of pole locations to coefficient quantization

-> hence preference for low-order systems (parallel/cascade)

Example: Implementation of a band-pass IIR 12-order filter

20 20

40

£ 60

—80 |-

0 0.2 0.4 0.67 0.87 T —1UU(

Radian frequency (o)

) 027 0.4 0.0 0.87 T

Radian frequency (w)

Cascade structure with 16-bit coeff. Direct form with 16-bit coeff.

Coefficient Quantization

Coefficient quantization effect on pole locations :

« example: 2nd-order system (e.g. for cascade
realization)

l+a,.27'+B.2°
1+y,.27'+6,.27°

H.(z) =

Coefficient Quantization

« example (continued):

with 5 bits per coefficient, all possible pole positions are...

for y, = -2:0.1250 :2 H
for6, = -1:0.0625 :1 1l st
lot(roots g %% naii
plot() 0.5] igﬁ*}: B g*
end ****I*****i*i**ﬂ** I**H***I**
(O}S <N SNl ko -
end *I********I******** I**********
-0.5} *%ﬁﬁi% i igg*
1L 25
S5 1 os 0 0.5 1 1.5

Low density of permissible pole locations at z=1, z=-1, hence
problem for narrow-band LP and HP filters

Coefficient Quantization

example (continued) :

possible remedy: coupled realization’
polesare n+ j.u where 1,H arerealized/quantized
hence permissible pole locations are (5 bits)

1.5

Quantization of an FIR filter

— H(2)

x|n|

> AH(z)

« Transfer function AH(z)
* The effect of coefficient quantization to linear phase

FIR filter example

« Passband attenuation 0.01, Radial frequency (0,0.4n)
e Stopband attenuation 0.001, Radial frequency (0.4x, m)

dB

20

=20

40

—il)

—30

—100

027

0.4 (.6
Radian frequency ()

087

Imaginary part

| |
N
! |
\\\:i . $
——
o |
0
&

FIR Lowpass Filter:
Unquantized Coefficients

a%%
______.I______
fj
© s
j/

@]

I |
o

o

1 2

Real part

FIR filter example — 16bits

FIR Lowpass Filter:

0,010 P
16-bit Coefficients
I ! I I
1.5 l —
(L0053 I 0
- e —
w ‘3]0&7» ! x_\ o
< - I o]
=) A ‘ 0N
= ! '/ 7 ~~7 | = op—-- L-O-C-—p——-O—————- ©-
= I
- o)
o 7
| : O
—0.005 HIL_J’ _
I 0
U ~15 | —
I | I I
~0.010 | I I | 1 0 1 5 3
0 (0.2 0.4 (.6 0.5 T

o Real part
Radian frequency (w)

Amplitude

FIR filter example - 8bits

0.03 FIR Lowpass Filter:
8-bit Coefficients
[; | |
0.02 — 1.5 | —
} 0
- e —
o 1 el I ™~ ©
0.01 — SRS . s S B I _
- RANe | oo
C'
= ORR———- —— O~ —O—
0 ;f’ 0.5 ¢ I o/ |
\/ g8 DQO i O// o
N R <l s —
~0.01 - -
-1.5— | =
| | | |
-0.02 I I | | -1 0 ! 2 3
0 0.2 0.4 0.6 0.8 W Real part

Radian frequency (w) I

Arithmetic Operations

Finite word-length effects in arithmetic operations:

 |In linear filters, have to consider additions &
multiplications

o Addition:
If, two B-bit numbers are added, the result has (B+1) bits.
o Multiplication:

If a B1-bit number is multiplied by a B2-bit number, the
result has (B1+B2-1) bits.
For instance, two B-bit numbers yield a (2B-1)-bit product

« Typically (especially so in an IIR (feedback) filter), the
result of an addition/multiplication has to be
represented again as a B’-bit number (e.g. B’=B). Hence
have to get rid of either most significant bits or least
significant bits...

Arithmetic Operations

 Option-1: Most significant bits

If the result is known to be upper bounded so that the most
significant bit(s) is(are) always redundant, it(they) can be dropped,
without loss of accuracy.

This implies we have to monitor potential overflow, and introduce
scaling strateqy to avoid overflow.

 Option-2: Least significant bits

Rounding/truncation/... to B’ bits introduces gquantization noise.

The effect of quantization noise is usually analyzed in a statistical
manner.

Quantization, however, is a deterministic non-linear effect, which
may give rise to limit cycle oscillations.

Scaling

The scaling problem:

* Finite word-length implementation implies maximum
representable number. Whenever a signal (output or
Internal) exceeds this value, overflow occurs.

e Digital overflow may lead (e.g. in 2's-complement
arithmetic) to polarity reversal (instead of saturation
such as in analog circuits), hence may be very harmful.

« Avoid overflow through proper signal scaling

e Scaled transfer function may be c*H(z) instead of H(z)
(hence need proper tracing of scaling factors)

Scaling

Time domain scaling:

Assume input signal is bounded in magnitude
ULK]] < U e
(i.e. u-max is the largest number that can be represented in the 'words’
reserved for the input signal’)
Then output signal is bounded by

yIK]| = i h[il.ulk —i]

(e)

< Z:O: ‘h[i]Hu[k — i]‘ < U Z ‘h[i]‘ =U.. HhH1

i=0

To satisfy |Y[K]| < Ve
(i.e. y-max is the largest number that can be represented in the ‘'words’
reserved for the output signal’)

we have to scale H(z) to c.H(z), with = yma‘l‘x H
V—

Scaling

Example: H@p)=—2 Ulk] ~
1-0.99.z°"
1 0.99
HhH1 — e T 1-0.99 =1 ‘j@
assume u[k] comes from 12-bit A/D-converter I
assume we use 16-bit arithmetic for y[k] & multiplier yIK]
210 1 |
“ 7 221h[, 16> ~{ shift |{H——
! u[k]
hence inputs u[k] have to be shifted by 0.99

3 bits to the right before entering the filter

(=loss of accuracy!) —TA

ylK]

Scaling

L2-scaling: ('scalingin L2 sense’)

« Time-domain scaling is simple & guarantees that overflow will
never occur, but often over-conservative (=too small c)

C: ymax
U | 1]
 |fan ‘energy upper bound’ for the input signal is known

o0

Evy = 2 |ulkl|

k=0
then L2-scaling uses

ymax

¢ = U
v Enma {1

2
i=0

Scaling

« So far considered scaling of H(z), i.e. transfer function
from u[k] to y[k]. In fact we also need to consider
overflow and scaling of each internal signal, i.e. scaling of
transfer function from u[k] to each and every internal
signal !

 This requires quite some thinking....

(but doable)

Scaling

 Something that may help: If 2’s-complement arithmetic is used, and if
the sum of K numbers (K>2) is guaranteed not to overflow, then
overflows in partial sums cancel out and do not affect the final
result (similar to 'modulo arithmetic’).

 Example:
If x1+x2+x3+x4 is guaranteed not to
overflow, then if in (((x1+x2)+x3)+x4)
the sum (x1+x2) overflows, this overflow
can be ignored, without affecting the
final result.

« As aresult (1), in adirect form realization,
eventually only 2 signals have to be
considered in view of scaling :

Scaling

« As aresult (2), in atransposed direct form realization, eventually
only 1 signal has to be considered in view of scaling...........

hence preference for transposed direct form over direct form.

Quantization Noise

The quantization noise problem :

o If two B-bit numbers are added (or multiplied), the result
Is a B+1 (or 2B-1) bit number. Rounding/truncation/... to
(again) B bits, to get rid of the least significant bit(s)
Introduces guantization noise.

 The effect of quantization noise is usually analyzed in a
statistical manner.

 Quantization, however, is a deterministic non-linear
effect, which may give rise to limit cycle oscillations.

 PS: Will focus on multiplications only. Assume additions are
Implemented with sufficient number of output bits, or are properly
scaled, or...

Quantization Noise

Quantization mechanisms:

Rounding Truncation Magnitude

T
IS

Truncation

probability

mean=0 mean=(-0.5)LSB (biased!) @ mean=0
variance=(1/12)LSB"2 variance=(1/12)LSB"2 variance=(1/6)LSB"2

Quantization Noise

Statistical analysis based on the following assumptions :
- each quantization error is random, with uniform probability
distribution function (see previous slide)

- quantization errors at the output of a given multiplier are
uncorrelated/independent (=white noise assumption)

- guantization errors at the outputs of different multipliers are
uncorrelated/independent (=independent sources assumption)

One noise source is inserted for each multiplier.

Since the filter is linear filter the output noise generated by
each noise source is added to the output signal.

Quantization Noise

The effect on the output signal of noise generated at a
particular point in the filter is computed as follows:
 noiseis e[k]. noise mean & variance are o2

e transfer function from from e[k] to filter output is G(z),9[K]
(‘noise transfer function’)

* Noise mean at the output is
lue'(DC o gain) = lue'G (Z)‘zzl
 Noise variance at the output is (remember L2-norm

o2.(noise - gain') = aj.(i j \G(eiw)fda))
27

v/

=0y |olk] =a2)jgl;
k=0

Repeat procedure for each noise source..

Quantization Noise

In atransposed direct realization all noise transfer
functions’ are equal (up to delay), hence all noise
sources can be lumped into one equivalent source

etc...

Quantization Noise

In a direct realization all noise sources can be lumped into
two equivalent sources

etc...

Quantization Noise

PS: Quantization noise of A/D-converters can be
modeled/analyzed in a similar fashion.

Noise transfer function is filter transfer function H(z).

Limit Cycles

Statistical analysis is simple/convenient, but quantization
Is truly a non-linear effect, and should be analyzed as a
deterministic process.

Though very difficult, such analysis may reveal odd
behavior:
Example: y[k] =-0.625.y[k-1]+u[K]
4-bit rounding arithmetic
Input u[k]=0, y[0]=3/8
output y[k] = 3/8, -1/4, 1/8, -1/8, 1/8, -1/8, 1/8, -1/8, 1/8,..

Oscillations in the absence of input (u[k]=0) are called
“zero-input limit cycle oscillations’.

Limit Cycles

Example: y[k] =-0.625.y[k-1]+u[K]

4-bit truncation (instead of rounding)

Input u[k]=0, y[0]=3/8

output y[k] =3/8, -1/4, 1/8, 0O, 0O, O,.. (no limit cycle!)
Example: y[k] =0.625.y[k-1]+u[K]

4-bit rounding

Input u[k]=0, y[0]=3/8

output y[k] = 3/8, 1/4, 1/8, 1/8, 1/8, 1/8,..
Example: y[k] =0.625.y[k-1]+u[K]

4-bit truncation

iInput u[k]=0, y[0]=-3/8

output y[k] =-3/8, -1/4, -1/8, -1/8, -1/8, -1/8,..

Conclusion: weird, weird, weird,... !

Limit Cycles

Limit cycle oscillations are clearly unwanted (e.g. may be
audible in speech/audio applications)

Limit cycle oscillations can only appear if the filter has
feedback. Hence FIR filters cannot have limit cycle
oscillations.

Mathematical analysis is very difficult.

Truncation often helps to avoid limit cycles (e.g. magnitude
truncation, where absolute value of quantizer output is
never larger than absolute value of quantizer input
(‘passive guantizer’)).

Some filter structures can be made limit cycle free, e.g.
coupled realization, orthogonal filters (see below).

