
Fixed-point design

Overview
• Introduction
• Numeric representation
• Simulation methods for floating to fixed point

conversion
• Analytical methods

Fixed-Point Design
• Digital signal processing algorithms

– Often developed in floating point
– Later mapped into fixed point for digital

hardware realization

• Fixed-point digital hardware
– Lower area
– Lower power

– Lower per unit production cost

Idea

Floating-Point Algorithm

Quantization

Fixed-Point Algorithm

Code Generation

Target System

A
lgorithm

 Level
Im

plem
entation

Level

Range Estimation

Fixed-Point Design

• Float-to-fixed point conversion required to target
– ASIC and fixed-point digital signal processor core
– FPGA and fixed-point microprocessor core

• All variables have to be annotated manually
– Avoid overflow
– Minimize quantization effects
– Find optimum wordlength

• Manual process supported by simulation
– Time-consuming
– Error prone

Fixed-Point Representation
• Fixed point type

– Wordlength
– Integer wordlength

• Quantization modes
– Round
– Truncation

• Overflow modes
– Saturation
– Saturation to zero
– Wrap-around

S X X X X X

Wordlength

Integer wordlength

SystemC format
www.systemc.org

X X X X X

Wordlength

Integer wordlength = 2

Tools for Fixed-Point Simulation
• gFix (Seoul National University)

– Using C++, operator overloading
• Simulink (Mathworks)

– Fixed-point block set 4.0
• SPW (Cadence)

– Hardware design system
• CoCentric (Synopsys)

– Fixed-point designer

gFix a(12,1);
gFix b(12,1);
gFix c(13,2);
c = a + b;

float a;
float b;
float c;
c = a + b;

Wordlengths determined manually
Wordlength optimization tool needed

Optimum Wordlength
• Longer wordlength

– May improve application
performance

– Increases hardware cost
• Shorter wordlength

– May increase quantization errors
and overflows

– Reduces hardware cost
• Optimum wordlength

– Maximize application performance
or minimize quantization error

– Minimize hardware cost

Wordlength (w)

Cost c(w)Distortion d(w)
[1/performance]

Optimum
wordlength

Wordlength Optimization Approach
• Analytical approach

– Quantization error model
– For feedback systems, instability and limit cycles can occur
– Difficult to develop analytical quantization error model of adaptive or

non-linear systems

• Simulation-based approach
– Wordlengths chosen while observing error criteria
– Repeated until wordlengths converge
– Long simulation time

Overview
• Introduction
• Numeric representation
• Simulation methods for floating to fixed point

conversion
• Analytical methods

Number representation
Matlab examples
• Numeric circle
• fi Basics
• fi Binary Point Scaling

Fi type

Fi object

Fi Object
• Notation
• Multiplication
• Multiplication with KeepMSB Mode
• Addition
• Addition with KeepLsb Mode
• Numerictype
• fimath

Overview
• Introduction
• Numeric representation
• Simulation methods for floating to fixed point

conversion
• Analytical methods

Data-range propagation
y1=2.1x1-1.8(x1+x2)=0.3x1-1.8x2
Input range: (-0.6 0.6)
Output range: (-1.26, 1.26)

Data-range propagation
Disadvantages
• Provide larger bounds on signal values than

necessary

Solution
• Simulation-based range estimation

Development of fixed point programs
• Toolbox gFix

Statistical characteristics of input signals

•

Implementation – range estimation

Result of the range estimator

Fixed point simulation

Operator overloading
•

Fixed-precision algorithm
•

Reducing the number of overflows in Matlab

1. Implement textbook algorithm in M.

2. Verify with builtin floating-point in M.

3. Convert to fixed-point in M and run with default settings.

4. Override the fi object with 'double' data type to log min and max values.

5. Use logged min and max values to set the fixed-point scaling.

6. Validate the fixed-point solution.

7. Convert M to C using Embedded MATLAB or Simulink to FPGA using
Altera and Xilinx tools.

Matlab functions
• logreport
• fi_best_numeric_type_from_logs

Overview
• Introduction
• Numeric representation
• Simulation methods for floating to fixed point

conversion
• Analytical methods

Filter Implementation
• Finite word-length effects (fixed point implementation)

- Coefficient quantization
- Overflow & quantization in arithmetic operations

- scaling to prevent overflow
- quantization noise statistical modeling
- limit cycle oscillations

Coefficient Quantization
The coefficient quantization problem :

• Filter design in Matlab (e.g.) provides filter coefficients to 15
decimal digits (such that filter meets specifications)

• For implementation, need to quantize coefficients to the word
length used for the implementation.

• As a result, implemented filter may fail to meet specifications… ??

• PS: In present-day signal processors, this has become less of a problem
(e.g. with 16 bits (=4 decimal digits) or 24 bits (=7 decimal digits)
precision). In hardware design, with tight speed requirements, this is still a
relevant problem.

Coefficient Quantization
Coefficient quantization effect on pole locations :
-> tightly spaced poles (e.g. for narrow band filters) imply

high sensitivity of pole locations to coefficient quantization
-> hence preference for low-order systems (parallel/cascade)

Example: Implementation of a band-pass IIR 12-order filter

Cascade structure with 16-bit coeff. Direct form with 16-bit coeff.

Coefficient Quantization
Coefficient quantization effect on pole locations :
• example : 2nd-order system (e.g. for cascade

realization)

21

21

..1
..1)(







zz
zzzH

ii

ii
i 



Coefficient Quantization
• example (continued) :

with 5 bits per coefficient, all possible pole positions are...

Low density of permissible pole locations at z=1, z=-1, hence
problem for narrow-band LP and HP filters

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

end
end

)plot(roots
1:0625.0:1for

2:1250.0:2for




i

i




Coefficient Quantization
• example (continued) :

possible remedy: `coupled realization’
poles are where are realized/quantized
hence permissible pole locations are (5 bits)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

 .j ,





+

+ +











-

y[k]

u[k]

Quantization of an FIR filter

• Transfer function ΔH(z)
• The effect of coefficient quantization to linear phase

FIR filter example
• Passband attenuation 0.01, Radial frequency (0,0.4)
• Stopband attenuation 0.001, Radial frequency (0.4, )

FIR filter example – 16bits

FIR filter example - 8bits

Arithmetic Operations
Finite word-length effects in arithmetic operations:

• In linear filters, have to consider additions &
multiplications

• Addition:
if, two B-bit numbers are added, the result has (B+1) bits.

• Multiplication:
if a B1-bit number is multiplied by a B2-bit number, the
result has (B1+B2-1) bits.
For instance, two B-bit numbers yield a (2B-1)-bit product

• Typically (especially so in an IIR (feedback) filter), the
result of an addition/multiplication has to be
represented again as a B’-bit number (e.g. B’=B). Hence
have to get rid of either most significant bits or least
significant bits…

Arithmetic Operations
• Option-1: Most significant bits

If the result is known to be upper bounded so that the most
significant bit(s) is(are) always redundant, it(they) can be dropped,
without loss of accuracy.
This implies we have to monitor potential overflow, and introduce
scaling strategy to avoid overflow.

• Option-2 : Least significant bits
Rounding/truncation/… to B’ bits introduces quantization noise.
The effect of quantization noise is usually analyzed in a statistical
manner.
Quantization, however, is a deterministic non-linear effect, which
may give rise to limit cycle oscillations.

Scaling
The scaling problem:

• Finite word-length implementation implies maximum
representable number. Whenever a signal (output or
internal) exceeds this value, overflow occurs.

• Digital overflow may lead (e.g. in 2’s-complement
arithmetic) to polarity reversal (instead of saturation
such as in analog circuits), hence may be very harmful.

• Avoid overflow through proper signal scaling
• Scaled transfer function may be c*H(z) instead of H(z)

(hence need proper tracing of scaling factors)

Scaling
Time domain scaling:
• Assume input signal is bounded in magnitude

(i.e. u-max is the largest number that can be represented in the `words’
reserved for the input signal’)

• Then output signal is bounded by

• To satisfy
(i.e. y-max is the largest number that can be represented in the `words’
reserved for the output signal’)

we have to scale H(z) to c.H(z), with

max][uku 

1max
0

max
00

.][.][.][][].[][huihuikuihikuihky
iii

 












1max

max

. hu
yc 

max][yky 

Scaling

• Example:

• assume u[k] comes from 12-bit A/D-converter
• assume we use 16-bit arithmetic for y[k] & multiplier

• hence inputs u[k] have to be shifted by
3 bits to the right before entering the filter
(=loss of accuracy!)



y[k]

u[k] +

x
0.99

100
99.01

1...

.99.01
1)(

1

1







 

h

z
zH

3
1

12

16

2
116.0

.2
2


h

c


y[k]

u[k]
+

x
0.99

shift

Scaling
L2-scaling: (`scaling in L2 sense’)
• Time-domain scaling is simple & guarantees that overflow will

never occur, but often over-conservative (=too small c)

• If an `energy upper bound’ for the input signal is known

then L2-scaling uses

where
…is an L2-norm (this leads to larger c)

1max

max

. hu
yc 







0k

2
max u[k]UE







0

2

2
][

i
ihh

2max

max

. hE
yc
U



Scaling
• So far considered scaling of H(z), i.e. transfer function

from u[k] to y[k]. In fact we also need to consider
overflow and scaling of each internal signal, i.e. scaling of
transfer function from u[k] to each and every internal
signal !

• This requires quite some thinking….
(but doable)

   

x
bo

x
b4

x
b3

x
b2

x
b1

+ +++
y[k]

+ +++

x
-a4

x
-a3

x
-a2

x
-a1

x1[k] x2[k] x3[k] x4[k]

Scaling
• Something that may help: If 2’s-complement arithmetic is used, and if

the sum of K numbers (K>2) is guaranteed not to overflow, then
overflows in partial sums cancel out and do not affect the final
result (similar to `modulo arithmetic’).

• Example:
if x1+x2+x3+x4 is guaranteed not to
overflow, then if in (((x1+x2)+x3)+x4)
the sum (x1+x2) overflows, this overflow
can be ignored, without affecting the
final result.

• As a result (1), in a direct form realization,
eventually only 2 signals have to be
considered in view of scaling :

   

x
bo

x
b4

x
b3

x
b2

x
b1

+ +++

+ +++

x
-a4

x
-a3

x
-a2

x
-a1

x1[k] x2[k] x3[k] x4[k]

Scaling
• As a result (2), in a transposed direct form realization, eventually

only 1 signal has to be considered in view of scaling……….:

hence preference for transposed direct form over direct form.

u[k]

   

x
-a4

x
-a3

x
-a2

x
-a1

y[k]

x
bo

x
b4

x
b3

x
b2

x
b1

+ +++
x1[k] x2[k] x3[k] x4[k]

Quantization Noise
The quantization noise problem :

• If two B-bit numbers are added (or multiplied), the result
is a B+1 (or 2B-1) bit number. Rounding/truncation/… to
(again) B bits, to get rid of the least significant bit(s)
introduces quantization noise.

• The effect of quantization noise is usually analyzed in a
statistical manner.

• Quantization, however, is a deterministic non-linear
effect, which may give rise to limit cycle oscillations.

• PS: Will focus on multiplications only. Assume additions are
implemented with sufficient number of output bits, or are properly
scaled, or…

Quantization Noise
Quantization mechanisms:

Rounding Truncation Magnitude
Truncation

mean=0 mean=(-0.5)LSB (biased!) mean=0
variance=(1/12)LSB^2 variance=(1/12)LSB^2 variance=(1/6)LSB^2

input

probability

error

output

Quantization Noise
Statistical analysis based on the following assumptions :
- each quantization error is random, with uniform probability

distribution function (see previous slide)
- quantization errors at the output of a given multiplier are

uncorrelated/independent (=white noise assumption)
- quantization errors at the outputs of different multipliers are

uncorrelated/independent (=independent sources assumption)

One noise source is inserted for each multiplier.

Since the filter is linear filter the output noise generated by
each noise source is added to the output signal.

Quantization Noise
The effect on the output signal of noise generated at a

particular point in the filter is computed as follows:
• noise is e[k]. noise mean & variance are
• transfer function from from e[k] to filter output is G(z),g[k]

(‘noise transfer function’)
• Noise mean at the output is

• Noise variance at the output is (remember L2-norm!)

Repeat procedure for each noise source…


y[k]

u[k] +

x
-.99

+ e[k]

2, ee 

1
)(.gain)DC.(




zee zG

2

2
2

0

22

222

.][.

))(
2
1.()gain'-noise.(`

gkg

deG

e
k

e

j
ee


























Quantization Noise
In a transposed direct realization all `noise transfer

functions’ are equal (up to delay), hence all noise
sources can be lumped into one equivalent source

etc...

u[k]

   

x
-a4

x
-a3

x
-a2

x
-a1

y[k]

x
bo

x
b4

x
b3

x
b2

x
b1

+ +++
x1[k] x2[k] x3[k] x4[k]

e[k]

Quantization Noise
In a direct realization all noise sources can be lumped into

two equivalent sources

etc...

e1[k]

   

x
bo

x
b4

x
b3

x
b2

x
b1

+ +++
y[k]

+ +++

x
-a4

x
-a3

x
-a2

x
-a1

x1[k] x2[k] x3[k] x4[k]

u[k]

e2[k]

Quantization Noise
PS: Quantization noise of A/D-converters can be

modeled/analyzed in a similar fashion.
Noise transfer function is filter transfer function H(z).

Limit Cycles
Statistical analysis is simple/convenient, but quantization

is truly a non-linear effect, and should be analyzed as a
deterministic process.

Though very difficult, such analysis may reveal odd
behavior:

Example: y[k] = -0.625.y[k-1]+u[k]
4-bit rounding arithmetic
input u[k]=0, y[0]=3/8
output y[k] = 3/8, -1/4, 1/8, -1/8, 1/8, -1/8, 1/8, -1/8, 1/8,..

Oscillations in the absence of input (u[k]=0) are called
`zero-input limit cycle oscillations’.

Limit Cycles
Example: y[k] = -0.625.y[k-1]+u[k]

4-bit truncation (instead of rounding)
input u[k]=0, y[0]=3/8
output y[k] = 3/8, -1/4, 1/8, 0, 0, 0,.. (no limit cycle!)

Example: y[k] = 0.625.y[k-1]+u[k]
4-bit rounding
input u[k]=0, y[0]=3/8
output y[k] = 3/8, 1/4, 1/8, 1/8, 1/8, 1/8,..

Example: y[k] = 0.625.y[k-1]+u[k]
4-bit truncation
input u[k]=0, y[0]=-3/8
output y[k] = -3/8, -1/4, -1/8, -1/8, -1/8, -1/8,..

Conclusion: weird, weird, weird,… !

Limit Cycles
Limit cycle oscillations are clearly unwanted (e.g. may be

audible in speech/audio applications)
Limit cycle oscillations can only appear if the filter has

feedback. Hence FIR filters cannot have limit cycle
oscillations.

Mathematical analysis is very difficult.
Truncation often helps to avoid limit cycles (e.g. magnitude

truncation, where absolute value of quantizer output is
never larger than absolute value of quantizer input
(`passive quantizer’)).

Some filter structures can be made limit cycle free, e.g.
coupled realization, orthogonal filters (see below).

