Properties of Z transform,
Inverse Z Transform
&

Solution of Difference Equations
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 Linearity:
* Time-shift:

* Multiplication by n:

o0

X(z)= > x[n]z”™"

N=—00

Proof:

dX (z)
dz

N=-—o0

e Multiplication by a™:
Proof:

* Multiplication by e/*":

* Multiplication by coswn:

« Multiplication by sinan:

e Summation:
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ax,[n]+bx,[n] < aX,[z]+bX,[z]

X(n-n,] < z"™X]z]

nx[n] <

=-n ix[n]z‘“‘l = -

dX (z)

dX[z]
dz

—7Z

=n Z x[n]z™" = Z{nx[n]}

N=—o0

a'x[n] < X (Ej
a

el"x[n]
cos(an)Xx[n]

sin(en)X[N]

v[n] = Zn: X[i]

zlaru(n)}= S @xn)z" = 3 xn]

N=—o0

N

N

N

=

&) =)

X (e "z)

@/ 2)|x (e z)+ X (e z)]
(i12)|x(e""2)-x(e7"2)
V(z) =




+ Convolution: x{n]*h[n]= S xklhn—k] < X(2)H()

k=—w0

Proof: Z[x[n]*h[n]]= Z{ i X[kIh[n - k]} = i { i X[kIh[n - k]}z o

k=—00

-y x[k]{ S hin- k]z”}

N=—00

N=-o0| k=—o0

Change of index on the second sum: m=n-Kk

o0

2= 3 Sohime |- S | Sohime |

k=—o0

= X(2)H(2)

The ROC is at least the intersection of the ROCs of x[n] and h[n], but can be a larger region
if there is pole/zero cancellation.

* The system transfer function is completely analogous to the CT case:

W] < H(z)= Y h[n]z™

N=—0o0

* Causality: h[n]=0 n<O0

Implies the ROC must be the exterior of a circle and include z = .
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* Initial Value Theorem: x[0]=lim X (2)

Proof: [im X (z) =Ilim Zx[n]z‘n = lim x[0] + X[1]z " +... = X[0]
Z—®© 77— 0 71—

* Final Value Theorem:  lim x[n] = lim(z -1)X(2)

3z2°-2z+4  32°-2z+4
2° -22°+152-05 (z-1)(z°-2+0.5)

. 322 -27+4 5
r|1|_f>TC]OX[|’1] =[(z —1)X(Z)]\Z:1 =7 .08 s =10

1

* Example: X (z)=

e Tables 7.2 and 7.3 in the textbook contain a summary of the z-Transform properties and
common transform pairs.
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* Recall the definition of the inverse Laplace transform via contour integration:
o+ joo

X(t) = % jX(s)eStds = %i X (s)e*'ds

o—jo

 The inverse z-transform follows from this:

x[n] = %f X (z)z"*dz

Evaluation of this integral is beyond the scope of this course. Instead, as with the Laplace
transform, we will restrict our interest in the inverse transform to rational forms (ratio of
polynomials). We will see shortly that this is convenient since linear constant-coefficient
difference equations can be converted to polynomials using the z-transform.

* As with the Laplace transform, there are two common approaches:
= Long Division
= Partial Fractions Expansion

» Expansion by long division Is also known as the power series expansion approach and can
be easily demonstrated by an example.

S
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y |

- Consider: X(z)=

23 +27+4
Solution:
ofution 2t +0z2%-32°-4z"
77 z3+22+4>z2 -1
z3+22+4>22—1 2 0 g
2° +2+4z77" _a3_ 4y
—3-4z" -3 6272 -12z77°
21 4 072 _ 373 — 477 +627% +122°°
z* +22+4>z2 -1 — 477 — 8z3°%-162""1
72 4+2+4771 6z2+20z°°%+162*
~3-4z7
-3 —62%-12773

— 47t +6727°+122°°

o X(2)=z2"40z27 =322 427" +...

Implications of stability?
= X[n] = 05[n] +15[n —1] - 36[n—3]-46[n—4] +...
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» Rational transforms can be factored using the same partial fractions approach
we used for the Laplace transforms.

* The partial fractions approach is preferred if we want a closed-form solution
rather than the numerical solution long division provides.
z° +1
2 —7°-71-2
In this example, the order of the numerator and denominator are the same. For
this case, we can use a trick of factoring X(z)/z:

« Example: X(z)=

A(z)=2°-2"-72-2=(z-2)(z+0.5+ j0.866)(z + 0.5— j0.866)
X(Z):Co+ cl. N 61_ LG
Z z z+05+)0.866 z+05-)0.866 z-2

c, = &(Z)} _ 1 _ o5
|z 7=0 -2

c, = &(z +0.5+ j0.866)} =0.429 + j0.0825
| Z 7=—0.5-]0.866

C, = &(z — 2)} =0.643
| Z =2
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We can compute the inverse using our table of common transforms:
clz_ N c‘:lz_ N C,Z
z+05+j0.866 z+0.5-)0.866 z-2

X(z)=c, +

Cl Cl C3
ot : -1 T . -1 T -1
1+0.5+ J0.866z 1+0.5-j0.866z 1-2z
X[n] = c,0[n]+c,(-0.5— j0.866)"u[n] +,(—0.5+ j0.866)"u[n]+c,2"u[n]

The exponential terms can be converted to a single cosine using a
magnitude/phase conversion:

Ip.| = /(0.5) +(0.866)? =1
4 0.866 _ 47

Zp, = +tan 3 ad
c,| = 1/(0.429)% + (0.0825)? = 0.437
Zc, =tan™ 0.0825 _ 0.19rad (10.89°)
429

x[n] = c,o[n]+ ¢, (-0.5— j0.866)"u[n] + C,(—0.5+ j0.866)" u[n]+c,2"u[n]
= c,0[n]+ 2[c, | p,| cos(£p,n + £c,) + ¢, (2)"u[n]

_ _0.55[n]+0.874 cos(%” n+0.19) +0.643(2)"u[n]
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» Consider a first-order difference equation:
y[n]+ay[n—1] = bx[n]

* We can apply the time-shift property:
Y(2)+alzY (2) + y[-1]]|=bX (2)

* We can solve for Y(2):

v@=-4, b
1+az 1+az

r X(2)

 The response is again a function of two things: the response due to the initial
condition and the response due to the input.

* |If the initial condition is zero:

Y(2) = X(z) = H(2)=

Y(z) b
1+az™ X(z) 1+az™
* Applying the inverse z-Transform:

h[n] = Zl[ b 1} =b(-a)"u[n]
1+ az

* Is this system causal? Why?

* Is this system stable? Why?

» Suppose the input was a sinusoid. How would you compute the output?
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« Consider the unit-step response of this system:

xnl=uln] = X(2) :1_12_1 - Zfa

Y(z):—ay[_l]+ b X(z)——ay[_1]+ b (1)

l+az?t 1+az™ l+az?t 1+az*\1-z71

_ay[-1]z s bz*
. z+a (z+a)(z-1)

» Use the (1/z) approach for the inverse transform:

V(2) _(E) bz? _ab/(1+a) N b/(1+a)

4 z)(z+a)(z-1) Z+a z-1

Y(Z):_ay[—l]z+ab/(1+a)z+b/(l+a)z:_ay[—l]z+ b (az R )
Z+a Z+a z-1 Z+a l+alz+a z-1

yIn] = —ay[-1](-a)" + %[a(—a)“ + "]
+a

= —ay[-1](-a)" + L[—(—a)”” +1], n=0,12,..
1+a

» The output consists of a DC term, an exponential term due to the I.C., and an
exponential term due to the input. Under what conditions is the output stable?

>
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» Consider a second-order difference equation:

yIn]+a,y[n-1]+a,y[n - 2] = b x[n] + b, x[n —1]
* We can apply the time-shift property:

Y(2)+a,|z7Y () + y[-1|+a, |27 (2) + 2 y[-1] + y[-2]| = by X (2) + b,z * X (2)
« Assume x[-1] = 0 and solve for Y(2):
a,y[-2]-ay[-1-ay[-1z"  by+bz"

l+a,z ' +a,z7? 1+a,z ' +a,z”?

« Multiplying z?%/z2:

Y(z) = X(2)

~ (Y1 +3,y[-2])2* —a,y[-1]z | byz* +byz
2’ +a,z+a, 2° +a,z+a,
« Assuming the initial conditions are zero:

Y(z) = X(2)

b,z° +b,z
Z° +a,z+a,
* Note that the impulse response is of the form:

Y(z) =

2° —(acosw)z
2’ —(2acos w)z +a’
This can be visualized as a complex pole pair with a center frequency and

bandwidth (see Java applet).
EE 3512: Lecture 34, Slide 10

h[n]:(a”coswn)J[n] < H(2) =

S



http://www.ece.msstate.edu/research/isip/projects/speech/software/demonstrations/applets/util/system/current/index.html

« Consider the unit-step response of this system:

x[n]=u[n] = xc):ljklzzfa

y[n]+1.5y[n-1]+0.5y[n—2] = x[n]—x[n—1] where y[-1]=2, y[-2]=1

Y(Z) _ _(aly[_1]+ a‘zy[_z])z2 —a, y[_l]z 4 b022 + blz X(Z)

2’ +a,z+a, 2° +a,z+a,
:—(a5xa+(a@a»f-xa@cnz+ 7% —7 ( z}
2’ +1.52+0.5 2 +15z+05\z-1
—~3.52% -z z°

[note: (z° —2)z=12°(z-1)]

= +
2 +1.52+05 z°+15z+05
* We can further simplify this:
—252% -7
z° +1.52+0.5
0.5z 3z
7405 z+1
 The inverse z-transform gives:

y[n] =0.5(-0.5)" -3(-1)", n=0,1 2, ...

Y(2) =
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« Consider a general difference equation:

yInl+ > ayin-il= > b dn 1]

 We can _apply the time-shift property once again:

N M
Y(2)+> az'Y(z)=) bz"X(z)  (assuming zeroinitial conditions)
i=1 i=1

Y(Z){“iaizi} X(z)&bizi}

i=1

bz
H(z) = Y(z) _ ,Zzl“ ! _ by+bz7 bz 4 4Dy 2"
X (2) 1+ZN:a.z“ l+a,+a,z2  +a,2 % +..+a,z "

« We can again see the important of poles in the stability and overall frequency
response of the system.

» Since the coefficients of the denominator are most often real, the transfer
function can be factored into a product of complex conjugate poles, which in
turn means the impulse response can be computed as the sum of damped
sinusoids. Why?

* The frequency response of the system can be found by setting z = el
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* In addition to our normal transfer function x[n] y[n] = x[n—1]
components, such as summation and D
multiplication, we use one important additional
component: delay. x[n] » y[n]=x[n-1]

 This is often denoted by its z-transform equivalent.
. o Y(2)=2"X(2)
* We can illustrate this with an example (assume

initial conditions are zero):

xln| + qln + 1] xiln| | + g|n + 1]
e ——| e ——— N L, { - [)
AT ‘—
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* Redraw using z-transform:

* Write equations for the behavior at X+ N 000 [ @] HN 20 100 HoN Y@
each of the summation nodes: N ¢ \l/ : /
ZQl(Z) =Q, (z) + X(2) >

2Q,(2) = Q,(2) =3Y(2)
Y(2) =2Q,(2) + Q,(2)

* Three equations and three unknowns: solve the first for Q,(z) and substitute into the
other two equations.

Ql(z) - Z_le (Z) + Z_lx (Z)
2Q,(2) = [27Q,(2) + 2 X (2)|-3Y (2)
Q,(2)=272Q,(2) + 27X (2) ~327Y(2)

Q,(2) = 1_12 [z x@-327v ()]
Y(2) = ZzlL_l22 [z2X(z)—3z1Y(z)]}+221X(z)+1_122 [Z_ZX(Z)—3Z_1Y(Z)]
Simplify...
H(z) = Y(z) 2z+1

X(z) 2°+3z+5
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Basic Interconnections of Transfer Functions

X(z) Y(z) X(z Y(z)
= H|(z > H,(z) - —| H(2)H|(2) -

(a)

X(z)

\

H(z) + Hy(z) p——n

(b)

¥z) _ Xz H\(z) ¥(z)
I + H|(E}H3(E}

2(2) —
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