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Review: Transfer Functions, Frequency 

Response & Poles and Zeros 

The system’s transfer function is the Laplace (Fourier) transform 

of the system’s impulse response H(s) (H(jw)). 

The transfer function’s poles and zeros are H(s)Pi(s-zi)/Pj(s-pi). 

This enables us to both calculate (from the differential equations) 

and analyse a system’s response 

Frequency response magnitude/phase decomposition 

H(jw) = |H(jw)|ejH(jw) 

Bode diagrams are a log/log plot of this information 
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System Causality & Transfer Functions 

Remember, a system is causal if y(t) only 
depends on x(t), dx(t)/dt,…,x(t-T) where T>0 

This is equivalent to saying that an LTI system’s 
impulse is h(t) = 0 whenever t<0. 

 

Theorem The ROC associated with the (Laplace) 
transfer function of a causal system is a right-
half plane 

Note the converse is not necessarily true (but is 
true for a rational transfer function) 

 

Proof By definition, for a causal system, 
s0ROC: 

 

If this converges for s0, then consider any s1>s0 

 
so s1ROC 
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Examples: System Causality 

Consider the (LTI 1st order) system with an impulse response 

 

This has a transfer function (Laplace transform) and ROC 

 
The transfer function is rational and the ROC is a right half plane.  

The corresponding system is causal. 

Consider the system with an impulse response 

 

The system transfer function and ROC 

 

 
The ROC is not the right half plane, so the system is not causal 
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System Stability 

Remember, a system is stable if                              , 

which is equivalent to bounded input signal => 

bounded output 

This is equivalent to saying that an LTI system’s 

impulse is |h(t)|dt<. 
 

Theorem An LTI system is stable if and only if the 

ROC of H(s) includes the entire jw axis, i.e. Re{s} = 

0. 
 

Proof The transfer function ROC includes the “axis”, 

s=jw along which the Fourier transform has finite 

energy 
 

Example The following transfer function is stable 
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Causal System Stability 

Theorem A causal system with rational system function H(s) is 
stable if and only if all of the poles of H(s) lie in the left-half plane 
of s, i.e. they have negative real parts 

 

Proof Just combine the two previous theorems 
 

Example 

 

 

 

 

 

Note that the poles of H(s) correspond to the powers of the 
exponential response in the time domain.  If the real part is 
negative, they exponential responses decay => stability.  Also, 
the Fourier transform will exist and the imaginary axis lies in the 
ROC 
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LTI Differential Equation Systems 

Physical and electrical systems are causal 

Most physical and electrical systems dissipate energy, they are 

stable.  The natural state is “at rest” unless some 

input/excitation signal is applied to the system 

When performing analogue (continuous time) system design, 

the aim is to produce a time-domain “differential equation” 

which can then be translated to a known system (electrical 

circuit …) 

This is often done in the frequency domain, which may/may not 

produce a causal, stable, time-domain differential equation. 

Example: low pass filter  
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Structures of Sub-Systems 

How to combine transfer functions H1(s) and H2(s) to get 

input output transfer function Y(s) = H(s)X(s)? 

Series/cascade 

 
Design H2() to cancel out the effects of H1() 

Feedback 

 
Design H2() to regulate y(t) to x(t), so H()=1 

System 1 System 2 
x y 

System 2 

System 1 
x y 
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Series Cascade & Feedback Proofs 

Proof of Series Cascade transfer function 

 

 

 

 

Proof of Feedback transfer function 
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Consider two cascaded LTI first order systems 

 

 

 

 

 

 

 

 

 

The result of cascading two first order systems is a second order 

system.  However, the roots of this quadratic are purely real 

(assuming a and b are real), so the output is not oscillatory,  as 

would be the case with complex roots. 
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Example: Cascaded 1st Order Systems 

H1(s) H2(s) 
x y 
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RC Filter as a simple analogue 
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Applying the Laplace transform 
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Impulse response 

… is the inverse transform of the transfer function 
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… time domain … 
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