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Review: Transfer Functions, Frequency
Response & Poles and Zeros

X(s) _ Y(s)=H(S)X(E)
\/\/\/ st ] H(JCO) =H (S)eSt

e

The system’s transfer function is the Laplace (Fourier) transform
of the system’s impulse response H(s) (H(jw)).

The transfer function’s poles and zeros are H(s)«IIi(s-z)/TTi(s-p).

This enables us to both calculate (from the differential equations)
and analyse a system’s response

Freguency response magnitude/phase decomposition
H(jo) = [H(e)]el<H0o
Bode diagrams are a log/log plot of this information
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System Causality & Transfer Functions

Remember, a system is causal if y(t) only
depends on x(t), dx(t)/dt,...,x(t-T) where T>0

This is equivalent to saying that an LTI system’s
Impulse is h(t) = 0 whenever t<0.

Theorem The ROC associated with the (Laplace) .
transfer function of a causal system is a right- |
half plane * el

Note the converse is not necessarily true (but is
true for a rational transfer function)

Proof By definition, for a causal system,
0,eROC: . .
H(s)=|_ h(t)e™dt= jo ht)e™'dt & jo |h(t) | e "dt < oo
If this converges for oy, then consider any o;>a;
j0°"| h(t)|e "dt = jo°°| h(t) |e e (roo)tdt < jo‘”| h(t) | e 'dt < o0
so 0,€ROC
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Examples: System Causality

Consider the (LTI 15t order) system with an impulse response
h(t) =e 'u(t)
This has a transfer function (Laplace transform) and ROC

H(s) = $ Re{s}> -1

The transfer function is rational and the ROC is a right half plane.
The corresponding system is causal.

Consider the system with an impulse response
h(t)=e™
The system transfer function and ROC
H(s) = j:e-'t'e-“dt — j_“; e tu(t)e 'dt + j: elu(~t)e dt
11 =2
Ts+l s-1 s2-1
The ROC is not the right half plane, so the system is not causal

, —1<Re{s}<1
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System Stability

Remember, a system is stable if Vx:|x<U —|y|<V,
which is equivalent to bounded input signal =>
bounded output

This is equivalent to saying that an LTI system’s
impulse is J|h(t)|dt<co.

Theorem An LTI system is stable if and only if the tIm S-plane

ROC of H(s) includes the entire jow axis, i.e. Re{s} = i
0. %

Re
Proof The transfer function ROC includes the “axis”,
s=jw along which the Fourier transform has finite

energy s=jw

Example The following transfer function is stable
L
e () > X (s) = ———, Re{s}>-a
S+a
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Causal System Stability

Theorem A causal system with rational system function H(S) is
stable if and only if all of the poles of H(s) lie in the left-half plane
of s, I.e. they have negative real parts

Proof Just combine the two previous theorems

fim s-plane
Example |
h(t) = (e —e™)u(t) x—%
1 -2 -1t Re
H(s) = , Re{s}>-1 :
(s+1)(s+2) :
STjw

Note that the poles of H(s) correspond to the powers of the
exponential response in the time domain. If the real part is
negative, they exponential responses decay => stability. Also,
the Fourier transform will exist and the imaginary axis lies in the
ROC
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LTI Differential Equation Systems

Physical and electrical systems are causal

Most physical and electrical systems dissipate energy, they are
stable. The natural state is “at rest” unless some
Input/excitation signal is applied to the system

When performing analogue (continuous time) system design,
the aim is to produce a time-domain “differential equation”
which can then be translated to a known system (electrical
circuit ...)

This is often done in the frequency domain, which may/may not
produce a causal, stable, time-domain differential equation.

Example: low pass filter
t H(jo)

- dh(t) 1
(=MD S ah() - 5(t)<»a+jw

—

-l >
—, 0
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Structures of Sub-Systems

How to combine transfer functions H,(s) and H,(s) to get
Input output transfer function Y(s) = H(s)X(s)?
Series/cascade

X y
» System 1 »  System 2

H(s) = H,(s)H,(s)

Design H,() to cancel out the effects of H,()

Feedback
X +

System 1 4 >
_ H, (s
H (S) 1( )
System 2 ¢

1+ H, (S)H,(5)

Design H,() to regulate y(t) to x(t), so H()=1
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Series Cascade & Feedback Proofs

Proof of Series Cascade transfer function

X
—* Hy(s)

W

| H,(s)

Y, H(S)=H,(5)H,(s)

—

Y(s)=H,(s)W(s),
Y(S) — Hz(S)Hl(S)X (S)

Wi(s) = H,(s)X(s)

Proof of Feedback transfer function

H,(s)

y

X +
IW

Hy(s) [*

H(S) — Hl(s)
1+H,(s)H,(s)

W(s)=H,(s)Y(s),  Y(s)=H,(s)(X(s)-W(s))
Y(8) = Hy(s) X (s) —H.(s)H,(s)Y (s)

Y(s)=

1/22/2015

Hl(S) X (S)

1+H,(s)H,(s)
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Example: Cascaded 15t Order Systems

Consider two cascaded LTI first order systems

H(s)=—— |

S+a X o W Ly

1 ™ Hy(s) | Hy(s) —

Hz(5)=ﬂ !

B =H.(5)H

H(S) = H,(5)H, (5 (&)= PR
11
s+as+b
1

B s’ +(a+b)s+ab

n(t) = Yoo (€7 —€ " )U(t)
The result of cascading two first order systems is a second order
system. However, the roots of this quadratic are purely real

(assuming a and b are real), so the output is not oscillatory, as
would be the case with complex roots.
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RC Filter as a simple analogue

® R L
l u ::} C i 7
C Yy = u
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Applying the Laplace transform

RC|sY (s) —y(0)] + Y (s) = Ul(s).

If we assume the intial condition y(0) = 0:

Y(s)(RCs+ 1) =Ul(s).

12



Impulse response

... 1S the inverse transform of the transfer function

u
I l
- =1
3 hit) = ¢ RC
2 v -
‘0 E
g (.
<L
e T R Py oaiiiaid
-4 - =1 u 1
I 1] ] I ]
Frequency |Mz)
u
=
o Ut
g
)
c U3
'R
1 o
T I S TR B T R R0 B ST T
-y ] 2 K] u 1 2
I n I I 1] I I

rrequency |Hz)

Figure 5.4: Amplitude and phase of the frequency response of an RC-filter
with a corner frequency of 0.16 Hz (RC' = 1).
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... time domain ...

H TICEr FESpOonse (0 5 Sep INPUL |H.=1)

amplitude

CONUROUS SoIUton
+ QIECrere SoIM0on, 1=, 135

u i I i i | i
u | < ] b 2 o !
nrme, secs

Figure 5.5 Output from an RC filter for a step function input (RC =
Solid line 1s the analytic solution, crosses indicate discrete solution w
tinmestep of 0.1s
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