CONVOLUTION PROPERTIES

Scaling Property

Scaling property:

$$x(t) \iff X(s)$$

 $x(at) \iff \frac{1}{a}X\left(\frac{s}{a}\right)$ for $a > 0$

 Time compression of a signal by a factor a causes expansion of its Laplace transform in s-scale by the same factor.

Time-Convolution & Frequency-Convolution Properties

Time-convolution property:

$$x_1(t) \Longleftrightarrow X_1(s)$$
 and $x_2(t) \Longleftrightarrow X_2(s)$
$$x_1(t) * x_2(t) \Longleftrightarrow X_1(s)X_2(s)$$

- Convolution in time domain is equivalent to multiplication in s (frequency) domain.
- Frequency-convolution property:

$$x_1(t) \Longleftrightarrow X_1(s)$$
 and $x_2(t) \Longleftrightarrow X_2(s)$
 $x_1(t)x_2(t) \Longleftrightarrow \frac{1}{2\pi j} [X_1(s) * X_2(s)]$

 Convolution in s (frequency) domain is equivalent to multiplication in time domain.

Application of the convolution Properties

Use the time-convolution property of the Laplace transform to determine

$$c(t) = e^{at}u(t) * e^{bt}u(t).$$

• Since $e^{at}u(t) \Leftrightarrow \frac{1}{(s-a)}$ $e^{bt}u(t) \Leftrightarrow \frac{1}{(s-b)}$

• Therefore $e^{at}u(t)*e^{bt}u(t) \Leftrightarrow \frac{1}{(s-a)(s-b)}$

$$C(s) = \frac{1}{(s-a)(s-b)} = \frac{1}{a-b} \left[\frac{1}{s-a} - \frac{1}{s-b} \right]$$

Perform inverse Laplace transform gives:

$$c(t) = \frac{1}{a-b}(e^{at} - e^{bt})u(t)$$

Relationship with time-domain analysis

- If h(t) is the impulse response of a LTI system, then we have seen in chapter 2 that the system response y(t) to an input x(t) is x(t)*y(t).
- Assuming causality, and that $h(t) \Leftrightarrow H(s)$ and $x(t) \Leftrightarrow X(s)$ then Y(s) = X(s)H(s)
- The response y(t) is the zero-state response of the LTI system to the input x(t). It follows that the transfer function H(s):

$$H(s) = \frac{Y(s)}{X(s)} = \frac{\mathcal{L}[\text{zero-state response}]}{\mathcal{L}[\text{input}]}$$

HW5_Ch4: 4.1-1 (a, b, c, d), 4.1-3 (a, b, c, d, f), 4.2-1 (a, b, e, g), 4.2-3 (a,c), 4.2-6

Summary of Laplace Transform Properties (1)

Operation	x(t)	X(s)
Addition	$x_1(t) + x_2(t)$	$X_1(s) + X_2(s)$
Scalar multiplication	kx(t)	kX(s)
Time differentiation	$\frac{dx}{dt}$	$sX(s) - x(0^-)$
	$\frac{d^2x}{dt^2}$	$s^2X(s) - sx(0^-) - \dot{x}(0^-)$
	$\frac{d^3x}{dt^3}$	$s^3X(s) - s^2x(0^-) - s\dot{x}(0^-) - \ddot{x}(0^-)$
	$\frac{d^n x}{dt^n}$	$s^n X(s) - \sum_{k=1}^n s^{n-k} x^{(k-1)}(0^-)$
Time integration	$\int_{0^{-}}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$
	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s) + \frac{1}{s} \int_{-\infty}^{0^-} x(t) dt$

Summary of Laplace Transform Properties (2)

Operation	x(t)	X(s)
Time shifting	$x(t-t_0)u(t-t_0)$	$X(s)e^{-st_0} t_0 \ge 0$
Frequency shifting	$x(t)e^{s_0t}$	$X(s-s_0)$
Frequency differentiation	-tx(t)	$\frac{dX(s)}{ds}$
Frequency integration	$\frac{x(t)}{t}$	$\int_{s}^{\infty} X(z) dz$
Scaling	$x(at), a \ge 0$	$\frac{1}{a}X\left(\frac{s}{a}\right)$
Time convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$
Frequency convolution	$x_1(t)x_2(t)$	$\frac{1}{2\pi j}X_1(s)*X_2(s)$
Initial value	$x(0^{+})$	$\lim_{s\to\infty} sX(s) \qquad (n>m)$
Final value	$x(\infty)$	$\lim sX(s)$ [poles of $sX(s)$ in LHP]

Laplace Transform for Solving Differential Equations

Remember the time-differentiation property of Laplace Transform

$$\frac{d^k y}{dt^k} \iff s^k Y(s)$$

Exploit this to solve differential equation as algebraic equations:

Example (1)

Solve the following second-order linear differential equation:

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y(t) = \frac{dx}{dt} + x(t)$$

• Given that $y(0^-) = 2$, $\dot{y}(0^-) = 1$ and input $x(t) = e^{-4t}u(t)$.

Time Domain

 $\frac{dy}{dt}$ d^2y

$$x(t) = e^{-4t}u(t)$$

$$\frac{dx}{dt}$$

Laplace (Frequency) Domain

$$sY(s) - y(0^{-}) = sY(s) - 2$$

$$s^{2}Y(s) - sy(0^{-}) - \dot{y}(0^{-}) = s^{2}Y(s) - 2s - 1$$

$$X(s) = \frac{1}{s+4}$$

$$sX(s) - x(0^{-}) = \frac{s}{s+4} - 0 = \frac{s}{s+4}$$

Example (2)

Time Domain

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y(t) = \frac{dx}{dt} + x(t)$$

Laplace (Frequency) Domain

$$[s^{2}Y(s) - 2s - 1] + 5[sY(s) - 2] + 6Y(s)$$

$$= \frac{s}{s+4} + \frac{1}{s+4}$$

$$(s^{2} + 5s + 6)Y(s) - (2s + 11) = \frac{s+1}{s+4}$$
$$(s^{2} + 5s + 6)Y(s) = \frac{2s^{2} + 20s + 45}{s+4}$$

$$(s^2 + 5s + 6)Y(s) = \frac{2s^2 + 20s + 45}{s + 4}$$

$$Y(s) = \frac{2s^2 + 20s + 45}{(s+2)(s+3)(s+4)}$$

$$y(t) = \left(\frac{13}{2}e^{-2t} - 3e^{-3t} - \frac{3}{2}e^{-4t}\right)u(t) \qquad Y(s) = \frac{13/2}{s+2} - \frac{3}{s+3} - \frac{3/2}{s+4}$$

$$y(t) = \left(\frac{13}{2}e^{-2t} - 3e^{-3t} - \frac{3}{2}e^{-4t}\right)u(t)$$