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Fourier Transform and
Spectra

Topics:

»  Fourier (FT) and Inverse Fourier Transform
>  Properties of Fourier Transforms & Some Useful Theorems
»  Parseval’s Theorem and Energy Spectral Density
>  Magnitude and Phase Spectra

»  Dirac Delta Function and Unit Step Function

» Rectangular and Triangular Pulses
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Fourier transform of a waveform

> Definition: Fourier transform

The Fourier transform (FT) of a wavefor
is:

W (f) = 3wt)]= r; ()27 dr

where
3[.] denotes the Fourier transform of [.]
f 1s the frequency parameter with units of Hz (i.e., 1/s)

» W(f) is also called a two-sided spectrum of w(t), si
both positive and negative frequency componen
obtained from the definition




Evaluation Techniques for FT Integr

> One of the following techniques can be
to evaluate a FT integral:

vV v v v v v v

Direct integration.

Tables of Fourier transforms or Laplace transforms.
FT theorems.

Superposition to break the problem into two or more simple problems.
Differentiation or integration of w(t).

Numerical integration of the FT integral on the PC via MATLAB

Fast Fourier transform (FFT)



Fourier transform of a waveform

» Definition: Inverse Fourier transform
The Inverse Fourier transform (FT) of a waveform

w(ty= [ W(f)e”*"df

» The functions w(t) and W(f) constitute a Fourier transfor

W)= [_ W (e’ df {amy w(f) = o)l dr

g

Time Domain description Frequency Domain de
(Inverse FT)




Fourier transform - Sufficient condition

>  The waveform w(t) is Fourier transformable if it sat
Dirichlet conditions:

1)  Over any time interval of finite length, the functi
single valued with a finite number of maxima and
and the number of discontinuities (if any) is finite.

2)  w(t) is absolutely integrable. That is,

; 0

[ pw(o)at <

. Above conditions are sufficient, but not necessary.

. A weaker sufficient condition for the existence of the Fourier transform is:

E = _OO \W(t)‘zdt < 00 Finite Energy\

. where E is the normalized energy.

. This is the finite-energy condition that is satisfied by all physically reali
waveforms.

. Conclusion: All physical waveforms encountered in engine
are Fourier transformable.



Spectrum of an exponential pulse

Let w(t) be a decaying exponential pulse that is switched on at ¢ = 0. That is,

w(t) = e, t>0
0, t<<0
Directly integrating the FT integral, we get
o0 et e~ (14 2af ) | o
W - “tg=iimfl gt = '
() fo_e e d Tl
or
W(f) = ——
1+ j2#@f

In other words, the FT pair is

{e" , > 0} - I
0, <0 1+ 27f
The spectrum can also be expressed in terms of the quadrature functions by rationalizing the
denominator of Eq. (2-34); thus,

—27f
1+ (2mf)?

X = Ty ™ Y =

The magnitude—phase form is

WO =\ T o ) = @)




Plots of functions X(f) and Y(f)




Theorems on Fourier Transforms

> Theorem : Spectral symmetry of real signals
If w(t) is real, then
Superscript asterisk

W) =W () the conjugate oper

* Proof: w(f) = 3w = EQ[W(I)]Q_I L

Substitute -f 1 \Take the conj

W(~f)= r; w(t)e! ™ dt — W(f) = f; W' (£)e’ ™ df

Since w(t) Is real, w*(t) = w(t), and it follows that W(-f) = W

If w(t) Is real and is an even function of t, W(f) is real.

If w(t) is real and is an odd function of t, W(f) is imagi




Theorems on Fourier Transforms

Corollaries of W(-f) = W (7)

If w(t) is real,
« Magnitude spectrum is even about the origin (i
WED = WE] e .
» Phase spectrum is odd about the origin.
OC-F) =-0(f) e .

Proof. W(f)=|W(f)e’*"

Then W(-f)= ‘W(—f}|eﬁ(_f) and

| Since, W(-f) = W*(f)
W (f)=w (e We see that corollari
(B) are true.

LU S 4 =




Theorems on Fourier Transforms - Sum

> f, called frequency and having units of hertz,
parameter of the FT that specifies what frequ
are interested in looking for in the waveform

> The FT looks for the frequency f in the w(t) ove
time, that is, over -~ < t < =

> W(f ) can be complex, even though w(t) is real.

If w(t) is real, then W(-f) = W*(f).




TABIE 2-1: SOME FOURIER TRANSFORM THEOREMS

Operation Function Fourier Transform
Linearity aiwi(t) + axwo(t) aiWi(f) + aWa(f)
Time delay w(t — 1y) W(f) eJela
Scale change w(ar) |}7| w (-ii)
Conjugation w*(r) W (=£)
Duality 0 w(=f)
Real signal w(t) cos(w.t + ) Hel'W(f —f£)+edW(f +1£)]
frequency
translation
[w(t) is real]
Complex signal w(t) el W(f — f.)
frequency
translation
Bandpass signal Re{g(t) e/} MG — f)+ G (=f = f)]
Differentiation dn:: ,Et) (J2mf )" W(f)
Integration j t w(A)dA (j2mf ) 'W(F) + 3W(0) 8(f)
Convolution wi(t) * wa(t) = J. ) wi(A) Wi(f)Wa(f)
walt = A)dr
Multiplication® wy(t)w(t) W\(f) * Wa(f) = J‘ Wi(A) Wo(f — A) dA
Multiplication t"w(t) (—j2m)™" W)

. .n

dfr




Let the damped sinusoid be given by

eMsinagt, t>0,T>0

\
[ 2or>o [

The spectrum of this waye_fofm is obtained by evaluating the FT. This is easily acédmplished by

usmg the result of the prevzaus example plus some of the Fourier theorems. me Eq (2—34)

o | - T

Y= G T TR +fo)}
=T { Lo o 1 } e
2 TV Rar(r = fo) RS2 TR

» Spectral Peaks of the I\/Iagnitude spectrum has moved to f=f,and
f=-f,due to multiplication with the sinusoidal.



Example 2-3: Variation of W(f) with f

W) in dB

oo L

Angle of WWif)




Dirac Delta Function & Unit Step Func

» Definition:
» The Dirac delta function 0(x) is defined |

r; w(x)S(x)dx = w(0)

where w(X) is any function that is continuous at x = 0. \
An alternative definition of 6(X) is:

[ s(x)ax=1

‘ &)

:

w x=0

and 5("{):{0 =0

From (2-45), the Sifting Property of the & function is
[, w8 e = xo)dl = wiixy)

If 8(x) is an even function the integral of the 0 function 1s given by:

5(x)=[" ey




Unit Step Function

> Definition: The Unit Step function u(t) i

0 1 7=0
H =
0 <0

1.5

O N N
- 100 =] =1 ] -0 -=200 O =200 e

Because 6(A) 1s zero, except at A = 0, the Dirac delta function is related to \h
step function by au(r)
dt

nd consequently, f " S(A)dA=ulr)

5(f) (2-51)

(2-50)



Example 2-4: Spectrum of a Sine Wave _

v(1) = A sin gt where e = 277
From Eq. (2-26), the spectrum is

_ [ ferwt — gmiy C[® simy
Vif) = J:w A( % )c}“dt S(I)—I_me dy

A A (%

By Eq. (2-48), these integrals are equivalent to Dirac delta functions. That is,
V() = j 5 [8F + o) — &f — o))

Note that this spectrum is imaginary, as expected, because »(/) is real and odd. In addition, a
meaningful expression was obtained for the Fourier transform, although »(1) was of the infinite
energy type and not absolutely integrable. That is, this »(f) does not satisfy the sufficient (but
not necessary) Dirichlet conditions as given by Eqgs. (2-31) and (2-32).

The magnitude spectrum is
S0t — fo) + 5 8F + )




Example 2-4: Spectrum of a Sine Wave (contd..

8(f) = -m/2, f=>0 __ | =907, f=0
oopm2 f<0) 9°, f<0

V() o(f)

A Weight +90°

T [ 2 1/ is A/2.
‘_fo fo f f—
-90°
(a) Magnitude Spectrum (b) Phase Spectrum {6, = 0)

Now let us generalize the dmudddwmlumtomcwiﬂnmuﬂﬂayp&mg\cﬁ;m
w(t) = Asin (@f + ) = A sin [wo(f + &/ w0)]
and, by using the time delay theorem, the spectrum becomes

W(f) = ;.‘% e/®Ui) [8(f + fo) — 8(f — fo)]




Rectangular and Triangular Puls

DEFINITION. Let [I(-) denote a single rectangular pulse. Then

¢
B s
i [L) & 2
E 0 -2
t o
L’ ll 2

(a) Rectangular Pulse

A sinx
1.0 [ >

DEFINITION. Sa(+) denotes the function®

08 / |
- 0.6 |-
sin x 04

0.2 |-

Sa(x) = N 0

—4r 37 27 - 02

(b) Sa(x) Function

DEFINITION. Let A(*) denote the triangular function. Then

A(i)é [l—l%l, |¢] =7
2 0, l#| =7

Triangular Function




Example 2-5: Spectrum of a Rectangular Puls

The spectrum is obtained by taking the Fourier transform of w(z) = II(t/T).

T2 _ e—ioT/2 _ pjoT/2
W(f) = f le /@ dt = ,
~T/2 —J@
sin(wl/2 _
=T =T Sa( =Tf)
ol[2
Thus,
4
IM|{—] TSa(aTf
(T) (#Tf)
Time Domain Frequency Domain
n(%) T Sa(#Tf)
1.0T
05T |-
1l —
ok L. e LT B K.
2 2 Y 5 T V& i i

(a) Rectangular Pulse and Its Spectrum

Note the inverse relationship between the
pulse width T and the zero crossing 1/T




Example 2-5: Spectrum of a Rectangular Puls

To find the spectrum of a Sa function we can use duality theorem Fro

Duality: W(t) €-> w(-)

~ =

T Sa( #Tf) |++H'(-—.%) =H( ) Because IT is an even a

Replacing the parameter T by 2W, we obtain the Fourier transform pair.

f
2WSa(272WT) > 11 (EW)

where W is the absolute bandwidth in hertz. This Fourier transform pair is also shown in Fig. 2-6b.

(2-56)

2WSa(27Wr)

w I -——
T
75/\&/1 ,\X\‘T W W

WW W | W ow T =

(b) Sa(x) Pulse and Its Spectrum



Example 2-4: Spectrum of a Rectangular Puls

* The spectra shown in previous slides are real because the tim
pulse ( rectangular pulse) is real and even

« If the pulse is offset in time domain to destroy the even symm
spectra will be complex.

Let us now apply the Time delay theorem of Table 2.1 to the
Rectangular pulse

_[n o<i<T (1 -T2\
e {l]_,- relsewhere} l'l(. T )

Time Delay Theorem: w(t-Ty) <> W(f) edoTd

ol 8)-n(l
We get: V(f) = Te™"(T Sa(nTf)

V(£) = [T Sa(wfT) cos(nfT)] + =T Sa(fT) sin(fT)]
XU =)




Example 2-6: Spectrum of a Triangular Pulse

w(t) = A(t/T)
dw(t) 1 2 1
oL e i U o e 1.0
dw(t) 1 2 1 ’
—————— D e - — + P -
-T
. . T dw(t)
Using Table 2-2, we find that the FT pair for the second derivative is d—
' t
d*w(t) 1 21
Ay 7] Il S ) ¢
dtz HTeN‘ T+Te-ﬂ : §. ................. :
which can be rewritten as ' : | : :
dzf 9 1 (et - -J«"ﬂ)2 - (sm Lo
i i
Referring to Table 2-1 and applymg the integral theorem twwe we get the FT pmr
inal waveform: .
SN (sin mfT)?
O T “Gawpy
Thus,

w(t) = A(—;—) H.fsaz(”fnh; ,




Spectrum of Rectangular, Sa and Triangular

Time Doman Frequeney Domain
n(,’.) - T SalnTs)
T — /TN .
-7 F == -7 | 77 r—

(a) Rectangular Pulse and Its Spectrum

2WSa(2mWe)

1 ‘ -W W
IW W TIW W yp So—

(b) Sa(x) Pulse and Its Spectrum

( ¢ ) T Saz(=zTf)
1.0T
_ . 12,
. "1' ’I' = S

(¢) Triangular Pulse and Its Spectrum
Figure 2-6 Spectra of rectangular, (sin x)/x, and triangular pulses.




Table 2.2 Some FT pairs

Function Time Waveform w(f) Spectrum W(f)
Rectangular n(%) 1{Sa(7fT)]
Triangular A(%) T(Sa(7fT)]
. a1 >0 1
Unit step 0 L il e 36(f) s
s altl, >0 L.
S sgn(e) £ [—1, 1<0 inf
Constant 1 8(f)
Impulse at 7 = 1 8(r = 1) e Relh
Sinc Sa(2mWe) 2LW n(%)
Phisisii eilont+9) el® 8(f — fo)
Sinusoid cos(wt + @) €70 &(f — 1) + i€ 8(f + f.)
Gaussian e~ "t/n)? toe~ ")
. etT, >0 T
E"g.:ﬂ {o, t<0 1+ 2nfT
Bxpontiil el o
o aided 1+ (2mfT)?
k=00 n=00
Impulse train 2. &r - kT) fo 2 8(f = nf),
k=0 -

where fo = 1/T




