
Asynchronous 

Sequential Circuits 



Synchronous Sequential 

Circuits 
• The change of internal state occurs in response to the 

synchronized clock pulses. 

• The memory elements are flip‐flops. 
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Asynchronous sequential circuits 

- Internal states can change at any instant of time when there is a 

change in the input variables 

- No clock signal is required  

- Have better performance but hard to design due to timing problems 
 
-The memory 

elements are either 

unclocked FF’s or 

time-delay elements. 

-The design of these 

circuits is more 

difficult than the 

design of 

synchronous circuits 

due to the timing 

problem. 



Why Asynchronous Circuits? 

1- Accelerate the speed of the machine (no need to 

wait for the next clock pulse). 

 

2-Used when the input signals change independently 

of the clock pulses. 

 

3- Simplify the circuit in the small independent circuits. 

 

4- Used to communicate two circuits each have its own 

clock. 



Asynchronous Circuits 

Combinational

Circuit Design

Z
m

Z
1

x
n

x
1

y
0

y
k

Y
0

Y
k

Secondary Variables

(present State)

Excitaion Variables

(next state)

n Input

Variables

m Output

Variables

delay

delay

delay

• Next state variables 

[Y1..Yk] are called excitation 

variables. 

 

• When an input variable 

changes, it takes a certain 

time to propagate through the 

combinational circuit to 

change Y, and then Y takes a 

certain time to propagate 

through the delay element to 

become a new state. 

• The delay elements provide short‐term memory for the sequential 

circuits. 

 

• Present state variables [y1..yk] are called secondary variables 

 



Asynchronous Circuits 

• The circuit reaches a steady‐state condition when yi = Yi for i=1,2,…, K. 

 

• Stable System: 

            for a given value of input variables, the system is stable if the circuit 

            reaches a steady state condition.  

 

• Fundamental‐mode operation:  

           this mode assumes that the one input signal changes at a time and  

           only when the circuit is in stable condition. 

 

• The time between two input changes must be longer than the time it takes 

the circuit to reach a stable state. 



Analysis Procedure 

The analysis consists of obtaining a table or a diagram that 

describes the sequence of internal states and outputs as a 

function of changes in the input variables. 

  

 Transition Table 

  

 Flow Table 

  

 Stability Consideration 



Transition Table 

Transition table is useful to analyze an asynchronous circuit from the circuit 

diagram Procedure to obtain transition table: 

 

1. Determine all feedback loops in the circuits 

 

2. Mark the input (yi) and output (Yi) of each feedback loop 

 

3. Derive the Boolean functions of all Y’s 

 

4. Plot each Y function in a map and combine all maps into one table 

 

5. Circle those values of Y in each square that are equal to the value of y in 

the same row 



Transition Table 

Y1 = xy1 + x’y2 

Y2 = xy’1 + x’y2 



Transition Table 

-If y=00 and x= 0        Y ==00 

(Stable) 

-If x changes from 0 to 1 while 

y=00, the circuit changes Y to 01 

which is temporary unstable 

condition (Y != y) 

-As soon as the signal propagates 

to make Y = 01, the feedback 

path causes a change in y to 01. 

(transition form the first row to 

the second row) 

-If the input repeatedly alternates 

between 0 and 1, the circuit will 

repeat the sequence of states 



Transition Table 

In an asynchronous sequential circuit, the internal state can 

change immediately after a change in the input. 

 

It is sometimes convenient to combine the internal state with 

input 

value together and call it the Total State of the circuit.  

(Total state = Internal state + Inputs) 

 

In the last example , the circuit has 

• 4 stable total states: (y1y2x= 000, 011, 110, and 101) 

• 4 unstable total states: (y1y2x= 001,010,111, and 100) 



Flow Table 

• A flow table is similar to a transition table except that the 

internal state are symbolized with letters rather than 

binary numbers. 

 
• It also includes the 

output values of the 

circuit for each stable 

state. 
 



Flow Table 
• In order to obtain the 

circuit described by a 

flow table, it is 

necessary to convert the 

flow table into a 

transition table from 

which we can derive the 

logic diagram . 

 

• This can be done 

through the assignment 

of a distinct binary value 

to each state. 



Race condition 
Two or more binary state 

variables will change value 

when one input variable 

changes. 

Cannot predict state 

sequence if unequal delay 

is encountered. 

: The final critical race-Non

stable state does not 

depend on the change 

order of state variables 

: The change Critical race

order of state variables will 

result in different stable 

states Should be avoided !! 



Race Solution 

It can be solved by making a proper binary assignment to the 

state variables. 

The state variables must be assigned binary  numbers in such 

a way that only one state variable can change at any one 

time when a state transition occurs in the flow table. 

It will be discussed later. 



Stability Check 

Asynchronous sequential circuits may oscillate between 

unstable     states due to the feedback 

  -Must check for stability to ensure proper operations  

Can be easily checked from the transition table 

   -Any column has no stable states        unstable 

   -Ex: when x1x2=11 in Fig. 9-9(b), Y and y are never the 

same 
Y = x’1x2 + x2y’ 



Latches in Asynchronous 

Circuits 
-The traditional configuration of asynchronous circuits is using 

one or more feedback loops 

    - No real delay elements.  

-It is more convenient to employ the SR latch as a memory 

element in asynchronous circuits 

    - Produce an orderly pattern in the logic diagram with the     

          memory elements clearly visible. 

-SR latch is also an asynchronous circuit 

    - Will be analyzed first using the method for asynchronous   

            circuits. 



SR Latch with NOR Gates 

S=1, R=1 (SR = 1) 

should not be used 

⇒ SR = 0 is 

normal mode 

 

* should be carefully 

checked first 



SR Latch with NAND Gates 

S=1, R=1 (SR = 1) 

should not be used 

⇒ SR = 0 is 

normal mode 

 

* should be carefully 

checked first 



Analysis Procedure 

Analysis Procedure for NOR latch based 

asynchronous circuit 

(i) Label each latch o/p with Yi and feed back path 

with yi 

(ii) Derive Boolean functions for Si and Ri 

(iii) Check SR = 0 for each NOR latch 

(iv) Evaluate Y = S + R’y for each latch 

(v) Construct the transition table 

(vi) Circle all stable states 



Analysis Example 



Analysis Example 

The procedure for analyzing an asynchronous sequential 

circuit with SR latches can be summarized as follows: 

 

1. Label each latch output with Yi and its external feedback 

path with yi for i=1,2,…,k 

 

2. Derive the Boolean functions for the Si and Ri inputs in each 

latch. 

 

 

 

 

 

1 1 2S x y
2 1 2S x x

\ \

1 1 2R x x
\

2 2 1R x y



Analysis Example 

3. Check whether SR =0 for each NOR latch or whether S’R’ = 

0 for each NAND latch. (if either of these two conditions is 

not satisfied, there is a possibility that the circuit may not 

operate properly) 

 

 

4. Evaluate Y = S + R’y for each NOR latch or Y = S’ + Ry for 

each NAND latch. 
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Analysis Example 

5. Construct a map, with the y’s representing the rows and 

the x inputs representing the columns. 

6. Plot the value of Y=Y1Y2…Yk in the map. 

7. Circle all stable states such that Y=y. the result is then 

the transition table. 

 

Transition Table 

• The transition table shows that the circuit 

is stable 

• Race Conditions:  there is a critical race 

condition when the circuit is initially in total 

state y1y2x1x2 = 1101 and x2 changes 

from 1 to 0. 

-The circuit should go to the total state 

0000. 

-If  Y1 changes to 0 before Y2, the circuit 

goes to total state 0100 instead of 0000. 



Implementation Procedure 

Procedure to implement an asynchronous sequential 

circuits with SR latches: 

1. Given a transition table that specifies the excitation function 

Y = Y1Y2…Yk, derive a pair of maps for each Si and Ri 

using the latch excitation table 

2. Derive the Boolean functions for each Si and Ri (do not to 

make Si and Ri equal to 1 in the same minterm square) 

3. Draw the logic diagram using k latches together with the 

gates required to generate the S and R (for NAND latch, use 

the complemented values in step 2) 



Implementation Procedure 

Latch Excitation Table 

• During the implementation process, the transition table of 

the circuit is available and we wish to find the values of S 

and R . 

• Excitation table: Lists the required inputs S and R for each 

of the possible transition from y to Y. 

 



Implementation Example 

• Given a transition table that specifies the excitation function 

Y=Y1Y2…Yk, then the general procedure for implementing 

a circuit with SR latches can be summarized as follows: 

 

 

 

 

 

 



1. Derive a pair of maps for Si and Ri for each I = 1, 2,…,k. 

(This is done by using the latch excitation table) 
 

 

 

 

 

 

 

 

Implementation Example 



Implementation Example 

2. Draw the logic diagram, using k latches together with the 

gates required to generate the S and R Boolean functions 

obtained in step1 (for NAND latches, use the complemented 

values) 

 



Debounce Circuit 

Mechanical switches are often used to generate binary signals to a digital 

circuit 

    -It may vibrate or bounce several times before going to a final rest  

    -Cause the signal to oscillate between 1 and 0 

 

A debounce circuit can remove the series of pulses from a contact bounce 

and produce a single smooth transition  

    -Position A(SR=01)  bouncing(SR=11)  Position B(SR=10)                        

Q = 1(set)  Q = 1(no change)  Q = 0 (reset) 



Design procedure 

(i) Obtain a primitive table from specifications 

(ii) Reduce flow table by merging rows in the primitive flow 

table 

(iii) Assign binary state variables to each row of reduced 

table 

(iv) Assign output values to dashes associated with unstable 

states to obtain the output map 

(v) Simplify Boolean functions for excitation and output 

variables; 

(vi) Draw the logic diagram 



Design Example: 

Problem Statement: 

Design a gated latch circuit (memory element) with two 

inputs, G(gate) and D(Data) and one output Q. The Q 

output will follow the D input as long as G=1. when G 

goes to 0, the information that was present at the D input 

at the time of transition is retained at the Q output. 



Design Example: 
1-Primitive Flow Table 

• A primitive flow table is a flow table with only one stable total 

state (internal state + input) in each row. 

• In order to form the primitive flow table , we first form a table 

with all possible total states. 



Design Example: 
1-Primitive Flow Table 
First, we fill in one square in each row 

belonging to the stable state in that 

row. 

Next we note that both inputs are not 

allowed to change at the same time, 

we enter dash marks in each row that 

differs in two or more variables from 

the input variables associated with the 

stable state. 

Next it is necessary to find values for two 

more squares in each row. The 

comments listed in the previous table 

may help in deriving the necessary 

information. 

 All outputs associated with unstable 

states are marked with a dash to 



Design Example: 

2-Reduction of the Primitive 

Flow Table 

Two or more rows can be merged 

into one row if there are non-

conflicting states and outputs in 

every columns. 

After merged into one row: 

  Don’t care entries are overwritten 

  Stable states and output values are 

included 

  A common symbol is given to the 

merged row 



Design Example: 

3-Transition Table and Logic Diagram 

• In order to obtain the circuit described by the reduced flow 

table, it is necessary to assign a distinct binary value to each 

state. 

• This converts the flow table to a transition table. 

• A binary state assignment must be made to ensure that the 

circuit will be free of critical race. (This problem will be 

covered later) 

a=0, b=1 in this example 



Design Example: 

Implementation with SR Latch 

 

Listed according to the transition table and the excitation 

table of SR latch 



Design Example: 

4- Assigning Outputs to Unstable States 

• While the stable states in a flow table have specific output 

values associated with them, the unstable states have 

unspecified output entries designated by a dash. 

These unspecified output values must be chosen so that no 

momentary false outputs occur when the circuit switches 

between stable states. 

         _______________________________________ 

 If the two stable states have the save output value, then an 

unstable states that is a transient state between them must have 

the same output.  

If an output variable is to change as a result of a state change, 

then this variable is assigned a don’t care condition. 



Design Example: 

4- Assigning Outputs to 

Unstable States 

Ex: 

• If a changes to b, the two stable states 

have the same output value =0 

 the transient unstable state b in the first 

row must have the same output value 

= 0 

• If b changes to c, the two stable states 

have different output values 

the transient unstable state c in the 

second row is assigned a don’t care 

condition 



Reduction of States and Flow 

Tables 
 

Implication Table 

 

Merging of the Flow Table 

 

Compatible Pairs 

 

Maximal Compatibles 

 

Closed Covering Condition 



Implication Table 

 
Equivalent States: Two states are equivalent if, for each 

possible input, they give exactly the same output and go to 

the same next states or to equivalent next states. 

 

Equivalent states can be combined into one sate in the state 

table. 

 

The checking of each pair of states for possible equivalence in 

a table with a large number of states can be done 

systematically by means of an Implication Table. 

 

Implication Table: It is a chart that consists of squares, one 

for every possible pair of states. 



Implication Table (Example): 
1. Place a cross in any square corresponding to a pair whose outputs are not 

equal 

2. Enter in the remaining squares the pairs of states that are implied by the pair of 

states representing the squares. (Start form the top square in the left column 

and going down and then proceeding with the next column to the right). 

3. Make successive passes through the table to determine whether any additional 

squares should be marked with a ‘x’. 

4. Finally, all the squares that have no crosses are recorded with check marks. 



Implication Table (Example): 
Its clear that (e,d) are equivalent. And 

this leads (a,b) and (e,g) to be 

equivalent too. 

Finally we have [(a,b) , c , (e,d,g) , f 

]4 states. 

So the original flow table can be 

reduced to: 

 



Merging of the Flow Table 

The state table may be incompletely specified(Some next 

states and outputs are don’t care). 

Primitive flow tables are always incompletely specified 

  -Several synchronous circuits also have this property 

Incompletely specified states are not “equivalent” Instead, we 

are going to find “compatible” states 

Two states are compatible if they have the same output and 

compatible next states whenever specified Three procedural 

steps: 

     -Determine all compatible pairs 

     - Find the maximal compatibles 

     -Find a minimal closed collection of compatible 



Compatible Pairs 

 Implication tables are used to find compatible states. 

     -We can adjust the dashes to fit any desired condition. 

     -Must have no conflict in the output values to be merged. 

 



Maximal Compatibles 

 A group of compatibles that contains all the possible combinations of 

compatible states. 

     -Obtained from a merger diagram. 

     -A line in the diagram represents that two states are  compatible. 

 n-state compatible  n-sided fully connected polygon. 

     -All its diagonals connected. 

•  Not all maximal compatibles 

are necessary. 

 



Closed Covering Condition 
• The condition that must be satisfied for row merging is that 

the set of chosen compatibles must: 

1. Cover all states. 

2. Be closed: ( the closure condition is satisfied if there are no implied 

states or if the implied states are included within the set) 

In the last example, the maximal compatibles are (a , b) (a , 

c , d),    (b , e , f) 

• if we remove (a , b), we get a set of two compatibles: (a , c , 

d) ,     (b , e , f) 

 -All the six states are included in this set. 

 -There are no impiled states for (a,c); (a,d);(c,d);(b,e);(b,f) and (e,f) [you 

can check the implication table] . the closer condition is satisfied 

The original primitive flow table can be merged into two rows, one 

for each of the compatibles.  



Closed Covering Condition 

(Example) 
• From the given implication table, we have the 

following compatible: pairs:  ( a , b ) ( a , d ) ( b , c )( 

c , d )( c , e )  ( d , e ) 

• From the merger diagram, we determine the 

maximal compatibles: ( a , b ) ( a , d ) ( b , c ) ( c , d 

, e ) 

• If we choose the two compatibles:( a , b ) ( c , d , e ) 

 

 

 

 

-All the 5 states are included in this set. 

- The implied states for (a,b) are (b,c). But (b,c) are 

not include in the chosen set  This set is not closed.  

-A set of compatibles that will satisfy the closed 

covering condition is ( a , d ) ( b , c ) ( c , d , e ) 



Race-Free State Assignment 

• Objective: choose a proper binary state assignment to 

prevent critical races 

• Only one variable can change at any given time when a 

state transition occurs 

• States between which transitions occur will be given 

adjacent assignments 

   -Two binary values are said to be adjacent if they differ in 

only one variable 

• To ensure that a transition table has no critical races, every 

possible state transition should be checked 

    -A tedious work when the flow table is large 

    -Only 3-row and 4-row examples are demonstrated 



3‐Row Flow‐Table Example 

Three states require two binary variables 

Outputs are omitted for simplicity 

Adjacent info. are represented by a transition diagram  

a and c are still not adjacent in such an assignment !! 

  -Impossible to make all states adjacent if only 3 states are 

used 



3‐Row Flow‐Table Example 

A race-free assignment can be obtained if we add anextra row 

to the flow table 

      Only provide a race-free transition between the stable 

states 

The transition from a to c must now go through d 

      00  10  11 (no race condition) 

 



4‐Row Flow‐Table Example 

• A flow table with 4 states requires 

an assignment of two state 

variables. 

• If there were no transitions in the 

diagonal direction (from a to c or 

from b to d), it would be possible 

to find adjacent assignment for the 

remaining 4 transitions. 

 

• In order to satisfy the adjacency 

requirement, at least 3 binary 

variables are needed. 



4‐Row Flow‐Table Example 

• The following state assignment map is suitable for any 4‐row 

flow table. 

   – a, b, c, and d are the original states. 

   – e, f, and g are extra states. 

   – States placed in adjacent squares in the map will have adjacent 

assignments 



4‐Row Flow‐Table Example 

• To produce cycles: 

   – The transition from a to d must be directed through the extra state e 

   – The transition from c to a must be directed through the extra state g 

   – The transition from d to c must be directed through the extra state f 



Multiple Row Method 

 Multiple-row method is easier 

   May not as efficient as in above 

shared-row method 

 Each stable state is duplicated with 

exactly the same output 

   Behaviors are still the same 

 While choosing the next states, 

choose the adjacent one 



Hazards 

Hazards: are unwanted switching transients that may 

appear at the output of a circuit because different paths 

exhibit different propagation delay. 

 

• Hazards occur in in combinational and asynchronous 

circuits: 

    – In combination circuits, they may cause a temporarily false output 

value. 

    – In asynchronous circuits, they may result in a transition to a wrong 

stable state. 



Hazards 

Static hazard: a momentary output change when no output 

change should occur 

If implemented in sum of products: 

     -no static 1-hazard  no static 0-hazard or dynamic hazard 

Two examples for static 1-hazard: 

 



Hazards 

• The dynamic hazard causes the output to change two, three 

or four times when it should change from 1 to 0 or from 0 to 

1. 

 

• The occurrence of the hazard can be detected by inspecting 

the map of a particular circuit. 

 



Hazards Free Circuit 

• The change in x2 from 1 to 0 moves the 

circuit from minterm 111 to minterm 101. 

• The hazard exists because the change of 

input results in a different product term 

covering the two minterms. 

• Whenever the circuit must move from one 

product term to another, there is a 

possibility of a momentary interval when 

neither term is equal to 1, giving rise to 

undesirable 0 output. 

• The solution is to enclose the minterms 

with another product term that overlaps 

both groupings. 



Hazard Free Circuit 

The removal of hazards requires the addition of redundant 

gates to the circuit. 



Remove Hazards with Latches 

Implement the asynchronous circuit with SR latches can also 

remove static hazards 

   A momentary 0 has no effects to the S and R inputs of a NOR latch 

    A momentary 1 has no effects to the S and R inputs of a NAND latch 



Example 

• Consider a NAND SR‐latch with the following Boolean 

functions for S and R 

  S = AB + CD 

  R = A’C 

• Since this is a NAND latch we must use the complement 

value for S and R 

  S = (AB + CD)’ =(AB)’(CD)’ 

  R = (A’C)’ 

 



Example 

• The Boolean function for output is 

  Q = (Q’S)’ = [Q’ (AB)’(CD)’]’ 

• The output is generated with two levels of NAND gates: 

 

 

 

 

 

 

• If output Q is equal to 1, then Q′ is equal to 0. If two of the 

three inputs go momentarily to 1, the NAND gate associated 

with output Q will remain at 1 because Q′ is maintained at 0. 



Essential Hazards 

•  Besides static and dynamic hazards, another type of 

hazard in asynchronous circuits is called: Essential 

Hazard 

• Caused by unequal delays along two or more paths that 

originate from the same input 

• Cannot be corrected by adding redundant gates 

• Can only be corrected by adjusting the amount of delay 

in the affected path 

   - Each feedback path should be examined carefully !! 



Design Example    

Recommended Design Procedure: 

 

1. State the design specifications. 

2. Derive a Primitive Flow Table. 

3. Reduce the Flow Table by merging rows. 

4. Make a race‐free binary state assignment. 

5. Obtain the transition table and output map. 

6. Obtain the logic diagram using SR latches. 



Design Example    

1) Design Specifications: 

 

It is necessary to design a negative‐edge‐triggered T 

flip‐flop. The circuit has two inputs T (toggle) and C 

(clock) and one output Q. The output state is 

complemented if T=1 and the clock changes from 1 to 0 

(negative‐edge‐triggering). Otherwise, under all input 

condition, the output remains unchanged. 



Design Example    

2) Primitive Flow Table 

 



Design Example    
3) Merging of the Flow Table 

 

 

 

 

 

 

 
 

 

           Implication Table                                        Merger Diagram 

The maximal compatibles pairs are: (a , f) (b , g , h) (c , h)      

(d , e , f) 



Design Example    

In this particular example, the minimal collection of 

compatibles is also the maximal compatibles set: 

    (a , f) (b , g , h) (c , h) (d , e , f) 



Design Example    

4) State Assignment and Transition Table 

No diagonal lines in the transition diagram: 

   No need to add extra states 



Design Example    

5) Logic Diagram 


