
Asynchronous

Sequential Circuits

Synchronous Sequential

Circuits
• The change of internal state occurs in response to the

synchronized clock pulses.

• The memory elements are flip‐flops.

Asynchronous Sequential Circuits

Combinational

Circuit Design

Z
m

Z
1

x
n

x
1

y
0

y
k

Y
0

Y
k

Secondary Variables

(present State)

Excitaion Variables

(next state)

n Input

Variables

m Output

Variables

delay

delay

delay

Asynchronous sequential circuits

- Internal states can change at any instant of time when there is a

change in the input variables

- No clock signal is required

- Have better performance but hard to design due to timing problems

-The memory

elements are either

unclocked FF’s or

time-delay elements.

-The design of these

circuits is more

difficult than the

design of

synchronous circuits

due to the timing

problem.

Why Asynchronous Circuits?

1- Accelerate the speed of the machine (no need to

wait for the next clock pulse).

2-Used when the input signals change independently

of the clock pulses.

3- Simplify the circuit in the small independent circuits.

4- Used to communicate two circuits each have its own

clock.

Asynchronous Circuits

Combinational

Circuit Design

Z
m

Z
1

x
n

x
1

y
0

y
k

Y
0

Y
k

Secondary Variables

(present State)

Excitaion Variables

(next state)

n Input

Variables

m Output

Variables

delay

delay

delay

• Next state variables

[Y1..Yk] are called excitation

variables.

• When an input variable

changes, it takes a certain

time to propagate through the

combinational circuit to

change Y, and then Y takes a

certain time to propagate

through the delay element to

become a new state.

• The delay elements provide short‐term memory for the sequential

circuits.

• Present state variables [y1..yk] are called secondary variables

Asynchronous Circuits

• The circuit reaches a steady‐state condition when yi = Yi for i=1,2,…, K.

• Stable System:

 for a given value of input variables, the system is stable if the circuit

 reaches a steady state condition.

• Fundamental‐mode operation:

 this mode assumes that the one input signal changes at a time and

 only when the circuit is in stable condition.

• The time between two input changes must be longer than the time it takes

the circuit to reach a stable state.

Analysis Procedure

The analysis consists of obtaining a table or a diagram that

describes the sequence of internal states and outputs as a

function of changes in the input variables.

 Transition Table

 Flow Table

 Stability Consideration

Transition Table

Transition table is useful to analyze an asynchronous circuit from the circuit

diagram Procedure to obtain transition table:

1. Determine all feedback loops in the circuits

2. Mark the input (yi) and output (Yi) of each feedback loop

3. Derive the Boolean functions of all Y’s

4. Plot each Y function in a map and combine all maps into one table

5. Circle those values of Y in each square that are equal to the value of y in

the same row

Transition Table

Y1 = xy1 + x’y2

Y2 = xy’1 + x’y2

Transition Table

-If y=00 and x= 0 Y ==00

(Stable)

-If x changes from 0 to 1 while

y=00, the circuit changes Y to 01

which is temporary unstable

condition (Y != y)

-As soon as the signal propagates

to make Y = 01, the feedback

path causes a change in y to 01.

(transition form the first row to

the second row)

-If the input repeatedly alternates

between 0 and 1, the circuit will

repeat the sequence of states

Transition Table

In an asynchronous sequential circuit, the internal state can

change immediately after a change in the input.

It is sometimes convenient to combine the internal state with

input

value together and call it the Total State of the circuit.

(Total state = Internal state + Inputs)

In the last example , the circuit has

• 4 stable total states: (y1y2x= 000, 011, 110, and 101)

• 4 unstable total states: (y1y2x= 001,010,111, and 100)

Flow Table

• A flow table is similar to a transition table except that the

internal state are symbolized with letters rather than

binary numbers.

• It also includes the

output values of the

circuit for each stable

state.

Flow Table
• In order to obtain the

circuit described by a

flow table, it is

necessary to convert the

flow table into a

transition table from

which we can derive the

logic diagram .

• This can be done

through the assignment

of a distinct binary value

to each state.

Race condition
Two or more binary state

variables will change value

when one input variable

changes.

Cannot predict state

sequence if unequal delay

is encountered.

: The final critical race-Non

stable state does not

depend on the change

order of state variables

: The change Critical race

order of state variables will

result in different stable

states Should be avoided !!

Race Solution

It can be solved by making a proper binary assignment to the

state variables.

The state variables must be assigned binary numbers in such

a way that only one state variable can change at any one

time when a state transition occurs in the flow table.

It will be discussed later.

Stability Check

Asynchronous sequential circuits may oscillate between

unstable states due to the feedback

 -Must check for stability to ensure proper operations

Can be easily checked from the transition table

 -Any column has no stable states unstable

 -Ex: when x1x2=11 in Fig. 9-9(b), Y and y are never the

same
Y = x’1x2 + x2y’

Latches in Asynchronous

Circuits
-The traditional configuration of asynchronous circuits is using

one or more feedback loops

 - No real delay elements.

-It is more convenient to employ the SR latch as a memory

element in asynchronous circuits

 - Produce an orderly pattern in the logic diagram with the

 memory elements clearly visible.

-SR latch is also an asynchronous circuit

 - Will be analyzed first using the method for asynchronous

 circuits.

SR Latch with NOR Gates

S=1, R=1 (SR = 1)

should not be used

⇒ SR = 0 is

normal mode

* should be carefully

checked first

SR Latch with NAND Gates

S=1, R=1 (SR = 1)

should not be used

⇒ SR = 0 is

normal mode

* should be carefully

checked first

Analysis Procedure

Analysis Procedure for NOR latch based

asynchronous circuit

(i) Label each latch o/p with Yi and feed back path

with yi

(ii) Derive Boolean functions for Si and Ri

(iii) Check SR = 0 for each NOR latch

(iv) Evaluate Y = S + R’y for each latch

(v) Construct the transition table

(vi) Circle all stable states

Analysis Example

Analysis Example

The procedure for analyzing an asynchronous sequential

circuit with SR latches can be summarized as follows:

1. Label each latch output with Yi and its external feedback

path with yi for i=1,2,…,k

2. Derive the Boolean functions for the Si and Ri inputs in each

latch.

1 1 2S x y
2 1 2S x x

\ \

1 1 2R x x
\

2 2 1R x y

Analysis Example

3. Check whether SR =0 for each NOR latch or whether S’R’ =

0 for each NAND latch. (if either of these two conditions is

not satisfied, there is a possibility that the circuit may not

operate properly)

4. Evaluate Y = S + R’y for each NOR latch or Y = S’ + Ry for

each NAND latch.

\ \

1 1 1 2 1 2

\

2 2 1 2 2 1

0

0

S R x y x x

S R x x x y

\

1 1 1 1 1 2 1 2 1 1 2 1 1 2 2

\ \ \

2 2 2 2 1 2 2 1 2 1 2 2 2 1 2

()

()

Y S R y x y x x y x y x y x y

Y S R y x x x y y x x x y y y

Analysis Example

5. Construct a map, with the y’s representing the rows and

the x inputs representing the columns.

6. Plot the value of Y=Y1Y2…Yk in the map.

7. Circle all stable states such that Y=y. the result is then

the transition table.

Transition Table

• The transition table shows that the circuit

is stable

• Race Conditions: there is a critical race

condition when the circuit is initially in total

state y1y2x1x2 = 1101 and x2 changes

from 1 to 0.

-The circuit should go to the total state

0000.

-If Y1 changes to 0 before Y2, the circuit

goes to total state 0100 instead of 0000.

Implementation Procedure

Procedure to implement an asynchronous sequential

circuits with SR latches:

1. Given a transition table that specifies the excitation function

Y = Y1Y2…Yk, derive a pair of maps for each Si and Ri

using the latch excitation table

2. Derive the Boolean functions for each Si and Ri (do not to

make Si and Ri equal to 1 in the same minterm square)

3. Draw the logic diagram using k latches together with the

gates required to generate the S and R (for NAND latch, use

the complemented values in step 2)

Implementation Procedure

Latch Excitation Table

• During the implementation process, the transition table of

the circuit is available and we wish to find the values of S

and R .

• Excitation table: Lists the required inputs S and R for each

of the possible transition from y to Y.

Implementation Example

• Given a transition table that specifies the excitation function

Y=Y1Y2…Yk, then the general procedure for implementing

a circuit with SR latches can be summarized as follows:

1. Derive a pair of maps for Si and Ri for each I = 1, 2,…,k.

(This is done by using the latch excitation table)

Implementation Example

Implementation Example

2. Draw the logic diagram, using k latches together with the

gates required to generate the S and R Boolean functions

obtained in step1 (for NAND latches, use the complemented

values)

Debounce Circuit

Mechanical switches are often used to generate binary signals to a digital

circuit

 -It may vibrate or bounce several times before going to a final rest

 -Cause the signal to oscillate between 1 and 0

A debounce circuit can remove the series of pulses from a contact bounce

and produce a single smooth transition

 -Position A(SR=01) bouncing(SR=11) Position B(SR=10)

Q = 1(set) Q = 1(no change) Q = 0 (reset)

Design procedure

(i) Obtain a primitive table from specifications

(ii) Reduce flow table by merging rows in the primitive flow

table

(iii) Assign binary state variables to each row of reduced

table

(iv) Assign output values to dashes associated with unstable

states to obtain the output map

(v) Simplify Boolean functions for excitation and output

variables;

(vi) Draw the logic diagram

Design Example:

Problem Statement:

Design a gated latch circuit (memory element) with two

inputs, G(gate) and D(Data) and one output Q. The Q

output will follow the D input as long as G=1. when G

goes to 0, the information that was present at the D input

at the time of transition is retained at the Q output.

Design Example:
1-Primitive Flow Table

• A primitive flow table is a flow table with only one stable total

state (internal state + input) in each row.

• In order to form the primitive flow table , we first form a table

with all possible total states.

Design Example:
1-Primitive Flow Table
First, we fill in one square in each row

belonging to the stable state in that

row.

Next we note that both inputs are not

allowed to change at the same time,

we enter dash marks in each row that

differs in two or more variables from

the input variables associated with the

stable state.

Next it is necessary to find values for two

more squares in each row. The

comments listed in the previous table

may help in deriving the necessary

information.

 All outputs associated with unstable

states are marked with a dash to

Design Example:

2-Reduction of the Primitive

Flow Table

Two or more rows can be merged

into one row if there are non-

conflicting states and outputs in

every columns.

After merged into one row:

 Don’t care entries are overwritten

 Stable states and output values are

included

 A common symbol is given to the

merged row

Design Example:

3-Transition Table and Logic Diagram

• In order to obtain the circuit described by the reduced flow

table, it is necessary to assign a distinct binary value to each

state.

• This converts the flow table to a transition table.

• A binary state assignment must be made to ensure that the

circuit will be free of critical race. (This problem will be

covered later)

a=0, b=1 in this example

Design Example:

Implementation with SR Latch

Listed according to the transition table and the excitation

table of SR latch

Design Example:

4- Assigning Outputs to Unstable States

• While the stable states in a flow table have specific output

values associated with them, the unstable states have

unspecified output entries designated by a dash.

These unspecified output values must be chosen so that no

momentary false outputs occur when the circuit switches

between stable states.

 If the two stable states have the save output value, then an

unstable states that is a transient state between them must have

the same output.

If an output variable is to change as a result of a state change,

then this variable is assigned a don’t care condition.

Design Example:

4- Assigning Outputs to

Unstable States

Ex:

• If a changes to b, the two stable states

have the same output value =0

 the transient unstable state b in the first

row must have the same output value

= 0

• If b changes to c, the two stable states

have different output values

the transient unstable state c in the

second row is assigned a don’t care

condition

Reduction of States and Flow

Tables

Implication Table

Merging of the Flow Table

Compatible Pairs

Maximal Compatibles

Closed Covering Condition

Implication Table

Equivalent States: Two states are equivalent if, for each

possible input, they give exactly the same output and go to

the same next states or to equivalent next states.

Equivalent states can be combined into one sate in the state

table.

The checking of each pair of states for possible equivalence in

a table with a large number of states can be done

systematically by means of an Implication Table.

Implication Table: It is a chart that consists of squares, one

for every possible pair of states.

Implication Table (Example):
1. Place a cross in any square corresponding to a pair whose outputs are not

equal

2. Enter in the remaining squares the pairs of states that are implied by the pair of

states representing the squares. (Start form the top square in the left column

and going down and then proceeding with the next column to the right).

3. Make successive passes through the table to determine whether any additional

squares should be marked with a ‘x’.

4. Finally, all the squares that have no crosses are recorded with check marks.

Implication Table (Example):
Its clear that (e,d) are equivalent. And

this leads (a,b) and (e,g) to be

equivalent too.

Finally we have [(a,b) , c , (e,d,g) , f

]4 states.

So the original flow table can be

reduced to:

Merging of the Flow Table

The state table may be incompletely specified(Some next

states and outputs are don’t care).

Primitive flow tables are always incompletely specified

 -Several synchronous circuits also have this property

Incompletely specified states are not “equivalent” Instead, we

are going to find “compatible” states

Two states are compatible if they have the same output and

compatible next states whenever specified Three procedural

steps:

 -Determine all compatible pairs

 - Find the maximal compatibles

 -Find a minimal closed collection of compatible

Compatible Pairs

 Implication tables are used to find compatible states.

 -We can adjust the dashes to fit any desired condition.

 -Must have no conflict in the output values to be merged.

Maximal Compatibles

 A group of compatibles that contains all the possible combinations of

compatible states.

 -Obtained from a merger diagram.

 -A line in the diagram represents that two states are compatible.

 n-state compatible n-sided fully connected polygon.

 -All its diagonals connected.

• Not all maximal compatibles

are necessary.

Closed Covering Condition
• The condition that must be satisfied for row merging is that

the set of chosen compatibles must:

1. Cover all states.

2. Be closed: (the closure condition is satisfied if there are no implied

states or if the implied states are included within the set)

In the last example, the maximal compatibles are (a , b) (a ,

c , d), (b , e , f)

• if we remove (a , b), we get a set of two compatibles: (a , c ,

d) , (b , e , f)

 -All the six states are included in this set.

 -There are no impiled states for (a,c); (a,d);(c,d);(b,e);(b,f) and (e,f) [you

can check the implication table] . the closer condition is satisfied

The original primitive flow table can be merged into two rows, one

for each of the compatibles.

Closed Covering Condition

(Example)
• From the given implication table, we have the

following compatible: pairs: (a , b) (a , d) (b , c)(

c , d)(c , e) (d , e)

• From the merger diagram, we determine the

maximal compatibles: (a , b) (a , d) (b , c) (c , d

, e)

• If we choose the two compatibles:(a , b) (c , d , e)

-All the 5 states are included in this set.

- The implied states for (a,b) are (b,c). But (b,c) are

not include in the chosen set This set is not closed.

-A set of compatibles that will satisfy the closed

covering condition is (a , d) (b , c) (c , d , e)

Race-Free State Assignment

• Objective: choose a proper binary state assignment to

prevent critical races

• Only one variable can change at any given time when a

state transition occurs

• States between which transitions occur will be given

adjacent assignments

 -Two binary values are said to be adjacent if they differ in

only one variable

• To ensure that a transition table has no critical races, every

possible state transition should be checked

 -A tedious work when the flow table is large

 -Only 3-row and 4-row examples are demonstrated

3‐Row Flow‐Table Example

Three states require two binary variables

Outputs are omitted for simplicity

Adjacent info. are represented by a transition diagram

a and c are still not adjacent in such an assignment !!

 -Impossible to make all states adjacent if only 3 states are

used

3‐Row Flow‐Table Example

A race-free assignment can be obtained if we add anextra row

to the flow table

 Only provide a race-free transition between the stable

states

The transition from a to c must now go through d

 00 10 11 (no race condition)

4‐Row Flow‐Table Example

• A flow table with 4 states requires

an assignment of two state

variables.

• If there were no transitions in the

diagonal direction (from a to c or

from b to d), it would be possible

to find adjacent assignment for the

remaining 4 transitions.

• In order to satisfy the adjacency

requirement, at least 3 binary

variables are needed.

4‐Row Flow‐Table Example

• The following state assignment map is suitable for any 4‐row

flow table.

 – a, b, c, and d are the original states.

 – e, f, and g are extra states.

 – States placed in adjacent squares in the map will have adjacent

assignments

4‐Row Flow‐Table Example

• To produce cycles:

 – The transition from a to d must be directed through the extra state e

 – The transition from c to a must be directed through the extra state g

 – The transition from d to c must be directed through the extra state f

Multiple Row Method

 Multiple-row method is easier

 May not as efficient as in above

shared-row method

 Each stable state is duplicated with

exactly the same output

 Behaviors are still the same

 While choosing the next states,

choose the adjacent one

Hazards

Hazards: are unwanted switching transients that may

appear at the output of a circuit because different paths

exhibit different propagation delay.

• Hazards occur in in combinational and asynchronous

circuits:

 – In combination circuits, they may cause a temporarily false output

value.

 – In asynchronous circuits, they may result in a transition to a wrong

stable state.

Hazards

Static hazard: a momentary output change when no output

change should occur

If implemented in sum of products:

 -no static 1-hazard no static 0-hazard or dynamic hazard

Two examples for static 1-hazard:

Hazards

• The dynamic hazard causes the output to change two, three

or four times when it should change from 1 to 0 or from 0 to

1.

• The occurrence of the hazard can be detected by inspecting

the map of a particular circuit.

Hazards Free Circuit

• The change in x2 from 1 to 0 moves the

circuit from minterm 111 to minterm 101.

• The hazard exists because the change of

input results in a different product term

covering the two minterms.

• Whenever the circuit must move from one

product term to another, there is a

possibility of a momentary interval when

neither term is equal to 1, giving rise to

undesirable 0 output.

• The solution is to enclose the minterms

with another product term that overlaps

both groupings.

Hazard Free Circuit

The removal of hazards requires the addition of redundant

gates to the circuit.

Remove Hazards with Latches

Implement the asynchronous circuit with SR latches can also

remove static hazards

 A momentary 0 has no effects to the S and R inputs of a NOR latch

 A momentary 1 has no effects to the S and R inputs of a NAND latch

Example

• Consider a NAND SR‐latch with the following Boolean

functions for S and R

 S = AB + CD

 R = A’C

• Since this is a NAND latch we must use the complement

value for S and R

 S = (AB + CD)’ =(AB)’(CD)’

 R = (A’C)’

Example

• The Boolean function for output is

 Q = (Q’S)’ = [Q’ (AB)’(CD)’]’

• The output is generated with two levels of NAND gates:

• If output Q is equal to 1, then Q′ is equal to 0. If two of the

three inputs go momentarily to 1, the NAND gate associated

with output Q will remain at 1 because Q′ is maintained at 0.

Essential Hazards

• Besides static and dynamic hazards, another type of

hazard in asynchronous circuits is called: Essential

Hazard

• Caused by unequal delays along two or more paths that

originate from the same input

• Cannot be corrected by adding redundant gates

• Can only be corrected by adjusting the amount of delay

in the affected path

 - Each feedback path should be examined carefully !!

Design Example

Recommended Design Procedure:

1. State the design specifications.

2. Derive a Primitive Flow Table.

3. Reduce the Flow Table by merging rows.

4. Make a race‐free binary state assignment.

5. Obtain the transition table and output map.

6. Obtain the logic diagram using SR latches.

Design Example

1) Design Specifications:

It is necessary to design a negative‐edge‐triggered T

flip‐flop. The circuit has two inputs T (toggle) and C

(clock) and one output Q. The output state is

complemented if T=1 and the clock changes from 1 to 0

(negative‐edge‐triggering). Otherwise, under all input

condition, the output remains unchanged.

Design Example

2) Primitive Flow Table

Design Example
3) Merging of the Flow Table

 Implication Table Merger Diagram

The maximal compatibles pairs are: (a , f) (b , g , h) (c , h)

(d , e , f)

Design Example

In this particular example, the minimal collection of

compatibles is also the maximal compatibles set:

 (a , f) (b , g , h) (c , h) (d , e , f)

Design Example

4) State Assignment and Transition Table

No diagonal lines in the transition diagram:

 No need to add extra states

Design Example

5) Logic Diagram

